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Abstract. Frequent subgraph mining (FSM) is an interesting research field and 
has attracted a lot of attention from many researchers in recent years, in which 
closed subgraph mining is a new topic with many practical applications. In the 
field of graph mining, GraMi (GRAph MIning) is considered state-of-the-art, and 
many algorithms have been developed based on the improvement of this ap-
proach. In 2021, we proposed the CloGraMi algorithm based on GraMi to mine 
closed frequent subgraphs from a large graph rapidly and efficiently. However, 
with NP time complexity and extremely high cost in terms of running time, graph 
mining is always a challenging problem for all researchers. In this paper, we pro-
pose a parallel processing strategy aiming to improve the execution speed of our 
CloGraMi algorithm. Our experiments on six datasets, including both undirected 
and directed graphs, with different sizes, including large, medium and small, 
show that the new algorithm significantly reduces running time and improves 
performance, and has better performance compared to the original algorithm. 

Keywords: Subgraph Mining; Closed Subgraph Mining; Multi-thread; Parallel.  

1 Introduction 

Because graphs have a non-linear structure with NP complexity [1], [2], [3], graph min-
ing has always been an interesting and challenging research area. Graphs are used to 
simulate, store, analysis and solve a wide variety of problems in both the scientific and 
commercial fields [4], [5], [6]. Graph mining [7], [8], [9], [10] is the premise for many 
different studies and practical applications, in areas such as social networks, maps anal-
ysis, telephone networks, bioinformatics, chemical compounds, crime investigation, 
etc. Closed frequent subgraph mining [11], [12], [13] is a relatively new field in this 
context, with a few studies already having been published [11], [12], [13], [14], [15], 
[16]. Extending this field is our motivation to study and research this topic. 
For example, and as in [12], a commercial company needs to analyze data that has been 
collected from its customers, and the sales department needs to find the groups of loyal 
customers (who frequently buy the company’s products) and the features of the rela-
tionships among the customer groups in order to have a flexible business strategy. In 
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Figure 1, graph G is used to simulate all the customers in the dataset, and each node 
represents a customer of this company (labeled A, B, C or D), in which each edge in 
the graph represents the relationship of each pair of customers (labeled x, y, z, t or w). 
The two subgraphs S1, S2 are two samples of groups of loyal customers. 

 
Fig. 1. G – a large graph – and its two subgraphs S1 and S2 

The above example leads to very useful problems in practice, in which users need to 
find all the groups of loyal customers as well as the largest number of purchases for 
that group, as this can help the sales department to adjust the business strategies of the 
company. This problem is useful not only for business [3], [17], but also in many other 
fields [18], [19], [20], [21] such as recommendation systems, crime investigation, in-
formation retrieval systems, graph clustering, decision support systems, traffic flow, 
map model analysis, etc. 
In 2014, the GraMi algorithm [1], [2], [22], [23] was proposed with the aim to effec-
tively mine all frequent subgraphs in a large graph. And then, in 2020, we introduced 
the SuGraMi algorithm [2] based on GraMi, which can find all frequent subgraphs and 
their support. In 2021, we proposed an algorithm to mine closed frequent subgraphs, 
the CloGraMi algorithm [12], based on SuGraMi. In this paper, our contribution is pro-
posing an effective strategy to improve our CloGraMi algorithm by parallel processing, 
it aims to reduce the running time, and we call it PCGraMi (Parallel Closed Graph 
Mining). 
Our paper consists of six sections: Section 1 introduces the problem of closed graph 
mining and our contribution; Section 2 surveys relevant algorithms; Section 3 consists 
of the main definitions in the field of graph mining; Section 4 presents the PCGraMi 
algorithm in detail; Section 5 describes the results of our evaluation studies; Finally, 
the conclusions and future work are discussed in Section 6. 

2 Related Work 

The GraMi algorithm [1], [2], [3] was proposed in 2014 as a fast frequent subgraph 
mining algorithm in a single large graph. This algorithm solves the FSM problem by 
introducing a new technique to store only templates of generated candidates. It searches 
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isomorphisms and only marks the corresponding values in domains of those templates, 
without enumerating all the occurrences of each candidate subgraph (corresponding 
isomorphisms of this subgraph [1], [2], [24], [25]) from a large graph. Because of this 
new technique, GraMi is different from previous grow-and-store methods [24], [26]. 
GraMi has modelled the support of a subgraph as a CSP (constraint satisfaction prob-
lem) model [1], [2], [22]. The GraMi algorithm iteratively unfolds the CSP model until 
it discovers a minimum set of occurrences for a candidate subgraph to be correctly 
identified as a frequent subgraph. To reduce the search time, all remaining occurrences 
are ignored. This process will repeat by extending (adding new edges) a frequent sub-
graph until no new frequent subgraphs are found. 
In 2016, a parallel FSM algorithm called ScaleMine [27] was proposed, and this applies 
distributed computing to the GraMi algorithm. ScaleMine is a two-phase approach [27], 
[28]: first, the algorithm performs an approximation to quickly identify the frequent 
subgraphs with high occurrence probability in the dataset; then, the exact calculations 
are performed using the results of the approximation phase to achieve better load bal-
ancing [29]. Experiments using this algorithm have extended to 8,192 cores of the Cray 
XC40 system, enabling it to solve a large graph with one billion edges and having faster 
mining performance than existing solutions. In 2020, we proposed a parallel approach 
PaGraMi [2] based on the original algorithm GraMi, using multi-thread processing in 
a computer with a multi-core CPU, combined with the SoGraMi algorithm [2] to reduce 
the search space of GraMi by pruning infrequent candidate subgraphs. 
The process of generating candidate subgraphs needs lots of memory to store a huge 
number of candidates [1], [3], [30], [31]. Algorithms such as GraMi [1], SoGraMi [2], 
WeGraMi [25] and CCGraMi [23] have their own efficient strategies for pruning and 
thus reducing the number of infrequent candidates. The goals of all the mentioned al-
gorithms are to reduce the costs of the generating phase [3], and improve the efficiency 
of memory usage and running time. Other parallel algorithms, such as ScaleMine [27] 
and Arabesque [32], have been proposed as new parallel algorithms using a message 
transfer interface on distributed systems, but they still lack a load balancing method for 
clusters or their machines in the system [3]. 
In 2018, the SSIGRAM algorithm (Spark-based Single Graph Mining) [33] was pro-
posed as a parallel algorithm for FSM based on Spark. It parallelizes the extending and 
evaluating the support of subgraphs on all distributed "workers". In addition, a new 
heuristic-based search strategy was proposed with three optimizations: (1) load balanc-
ing, (2) top-down pruning and (3) pre-search pruning during support evaluation, help-
ing to significantly improve performance. The support evaluation of candidates are sim-
ultaneously carried out at the “executors” in the Spark cluster. The evaluation results 
demonstrate that the SSIGRAM algorithm can perform significantly better than GraMi 
algorithm on all four different real datasets. Furthermore, it is capable of operating at 
lower support thresholds. While the SIGRAM [34] algorithm enumerates all interme-
diate steps using the maximum independent sets (MIS) measurements. However, these 
steps have NP complexity, thus the method is extremely expensive in practice [29]. 
In 2021, we introduced the CCGraMi algorithm [23], which is based on connected com-
ponents in a large graph with two main contributions: finding isomorphisms of sub-
graphs in each connected component of the large graph instead of searching in the 
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whole large graph to reduce searching time, and early pruning of the domains of candi-
date subgraphs based on the size of the connected components to reduce storage space 
and searching time on those domains. We also proposed the CloGraMi algorithm in 
2021 [12] to mine closed subgraphs, moreover we have three effective strategies aiming 
to optimize this algorithm: a level order traversal strategy to reduce the time for the 
search, early determining of closed subgraphs, and setting a constraint for pruning of 
candidates that are non-closed subgraphs. 
In 2022, because the GraMi algorithm [1] lacked an effective strategy to balance its 
search space, we introduced the BaGraMi algorithm [22] to address this issue. This 
decreases the size of both the search space for all generated subgraphs and domain for 
each candidate subgraph [35], and thus helps balance the search space of the original 
GraMi algorithm [2]. The main contributions of this algorithm are to reduce the invalid 
assignments in the domain of a candidate and the number of infrequent subgraphs, en-
hancing the mining performance. Our algorithm not only reduces the running time but 
also the memory requirements of the mining process. 
According to our survey [3] in 2022, most related studies focus on FSM [7], [8], [9], 
[10], [36], and there are few algorithms in the field of closed frequent subgraph mining 
[11], [14], [13], [15], [16], [37], [38], and thus we propose to improve our CloGraMi 
algorithm by using a parallel processing strategy to improve the execution speed of this 
algorithm on multi-core personal computers. The goal of this algorithm is to boost the 
performance of the mining closed frequent subgraphs from a single large graph process. 

3 Definitions 

Definition 1. [1], [2], [12]: Let 𝐺 be a large graph, 𝐺 = (𝑉, 𝐸, 𝐿). In which, 𝑉 denotes 
the set of all the nodes, E denotes the set of all the edges	and 𝐿 is a function to assign 
labels to all the nodes/edges, respectively. 
Definition 2. [1], [12], [22]: A graph 𝑆 = (𝑉!, 𝐸!, 𝐿!) is a subgraph of 𝐺 = (𝑉, 𝐸, 𝐿) iff 
𝑉! ⊆ 𝑉, 𝐸! ⊆ 𝐸 and 𝐿!(𝑣) = 𝐿(𝑣) for ∀𝑣 ∈ 𝑉!; 𝐿𝑆((𝑢, 𝑣)) = 𝐿((𝑢, 𝑣)) for ∀(𝑢, 𝑣) ∈
𝐸𝑆. 
Definition 3. [1], [12], [23]: Let 𝑆 = (𝑉!, 𝐸!, 𝐿!) be a subgraph of 𝐺 = (𝑉, 𝐸, 𝐿). A 
subgraph isomorphism 𝐼 of 𝑆 to 𝐺 is an injective function 𝑓:	𝑉! → 𝑉 satisfying: 

(a) 𝐿!(𝑣) = 𝐿(𝑓(𝑣)), ∀𝑣 ∈ 𝑉! 
(b) (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸	and	𝐿!(𝑢, 𝑣) = 𝐿(𝑓(𝑢), 𝑓(𝑣)), ∀(𝑢, 𝑣) ∈ 𝐸!. 

Example 1: In Figure 1 [12], the subgraph 𝑆" has three distinct isomorphisms 𝐼#, 𝐼" and 
𝐼$ as presented in Table 1. 

Table 1. Three distinct isomorphisms of S2. 

Subgraph S2 v0 v1 
Isomorphism I1 u0 u1 
Isomorphism I2 u2 u3 
Isomorphism I3 u6 u7 
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The notation 𝑢 is used to indicate all the nodes in the large graph 𝐺 and the notation 𝑣 
is used to indicate all the nodes in the subgraph 𝑆. Each node 𝑣 ∈ 𝑉! has a domain 𝐷 
containing all the nodes 𝑢 that have the same node label with 𝑣 and they can be assigned 
to 𝑣. The assignments 𝑢 to 𝑣 are used to list, mark and count the number of isomor-
phisms of subgraph 𝑆 in the large graph 𝐺. 
Example 2: As shown in Figure 2, the domain of 𝑣% ∈ 𝑆 is 𝐷 = {𝑢%, 𝑢", 𝑢&, 𝑢'}. 
Definition 4. [22]: An assignment of a node 𝑢 ∈ 𝑉( in the domain of node 𝑣 ∈ 𝑉! is 
valid if there exists an isomorphism 𝐼 that assigns 𝑢 to 𝑣, invalid otherwise. 
Example 3: In Figure 2, the nodes 𝑢%, 𝑢", and 𝑢& in the domain are valid assignments 
because there exist three isomorphisms 𝐼#, 𝐼" and 𝐼$ assigning 𝑢%, 𝑢", and 𝑢& to 𝑣%, 
respectively; 𝑢'	is an invalid assignment in the domain of 𝑆"	because there is no iso-
morphism that assigns 𝑢' to 𝑣%. 
Definition 5. [2], [22]:  The support of 𝑆 in 𝐺 (denoted by 𝑠((𝑆)) is the minimum 
number of all distinct valid assignments of ∀𝑣 ∈ 𝑉!. In other words:  
𝑠((𝑆) = 𝑚𝑖𝑛{𝑡|𝑡 = |𝐹(𝑣)|, ∀𝑣 ∈ 𝑉!}. 

Example 4 [2], [12]: The support of subgraph 𝑆" in large graph 𝐺: 
 𝑠((𝑆") = 𝑚𝑖𝑛(|𝐹(𝑣%)|, |𝐹(𝑣#)|, |𝐹(𝑣")|)  
 = 𝑚𝑖𝑛(3, 3, 3) = 3. 

 
Fig. 2. Valid and invalid assignments for a subgraph 

Definition 6. [3]: A subgraph 𝑆 in a large graph 𝐺 is called a frequent subgraph if 
𝑠((𝑆) ≥ 𝜏, in which 𝜏 is a given frequency threshold. 
Remark: We use 𝜏 = 2 for all our examples in this paper. 
Example 5 [12]: As 𝑠((𝑆") = 3 ≥ 𝜏, it is a frequent subgraph in 𝐺. 
Definition 7. [3], [12]: A frequent subgraph 𝑆 is a closed frequent subgraph if there 
does not exist any supergraph 𝑆’ (𝑆 ⊂ 𝑆’) whose the support is equal to that of 𝑆 (called 
as “closed subgraph” in short). 
Example 6 [12]: 𝑆# is a non-closed subgraph because 𝑆# ⊂ 𝑆"	and 𝑠((𝑆") = 𝑠((𝑆#) =
3, and 𝑆" is a closed subgraph (see detail in [12]). 
In the CloGraMi algorithm [12], we propose traversing the search tree by level to iden-
tify closed subgraphs early, in which in order to determine if the subgraph S at level n 
on the search tree is a closed subgraph the mining program only needs to compare S 
with frequent subgraphs at level (n + 1) in the search tree, instead of comparing this 
frequent subgraph with all mined frequent subgraphs. In this work, a new parallel pro-
cessing strategy for our CloGraMi algorithm is proposed. Whereas, each branch in the 
search tree corresponding to an edge in the FrequentEdge list [2], [12] will be assigned 
to a concurrent thread, thus many branches in the search tree will be executed simulta-
neously, each frequent subgraph at level n on the branches will be mined and compared 
with the frequent subgraph at level (n + 1). In this PCGraMi algorithm, many frequent 
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subgraphs are generated and compared at the same time to find out the closed subgraphs 
to decrease the running time in the comparison to CloGraMi, our original algorithm. 

4 Proposed Method 

In the SuGraMi algorithm [2], as 𝑠((𝑆) ≤ 𝑠((𝑆′) with 𝑆′ be a child of 𝑆 on the search 
tree was proven, based on this Downward Closure Property (DCP) [25] we introduced 
a level-wise traversal strategy [12] on the search tree, which can quickly identify closed 
subgraphs. Each frequent subgraph 𝑆 of size 𝑘 compares its support only with sub-
graphs 𝑆′ with size (𝑘 + 1) being children of 𝑆 [12]. We propose a parallel processing 
strategy to improve the speed of the CloGraMi algorithm in this paper, in which each 
branch of the search tree will be assigned to a thread, the threads will generate candidate 
subgraphs, check the support, and determine closed subgraphs on the same branch of 
the search tree. 
Example 7: For the graph 𝐺 in Figure 1, after evaluating all edges’ support and pruning 
the infrequent edges, we have a FrequentEdges list consisting of edges as in Figure 3: 

 
Fig. 3. The frequent edges list 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 = {A   x   B; B   y   C; C   z   D} 
When the mining process generates the 𝑖)* thread to process the edge 𝑒+ in the 
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list, the edges 𝑒%, 𝑒#,⋯, 𝑒+,# have already been processed in other 
threads, so they will be removed from the 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list of this thread [2] as in 
Figure 4, and thus main program can implement without generating duplicate sub-
graphs. 
Our algorithm consists of three steps. 
(1) Each edge in the 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list is assigned to a separate thread (Line 4 to 
Line 8). 
(2) These threads are then executed simultaneously (Line 6 and Line 7) based on the 
number of available processor cores. The running time of this parallel phase will be the 
time of the largest thread in the list (usually the first thread because it needs to combine 
with all remaining edges). 
(3) Collecting closed subgraphs (Line 9 and Line 10) returned from these threads (col-
lection time is very small compared to mining time). 
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Algorithm: PCGraMi 
Input: A graph G, a frequency threshold t 
Output: All closed subgraphs S of G 
1 ClosedSubgraphsList ← ∅ //the list of all closed subgraph in graph 
G 
2 Let FrequentEdges is a set of frequent edges in G 
3 Let R be the result set for all simultaneously threads 
4 foreach e ∈ FrequentEdges do  
5  Generate a new thread and do 
6   r ← ∅ 
7   r ← r ∪ extendSubgraph (e, G, τ, FrequentEdges) 
8   Remove e from FrequentEdges 
9 foreach r ∈ R do 
10  ClosedSubgraphsList ← ClosedSubgraphsList ∪ r 
11 return ClosedSubgraphsList 

At Line 7 in our PCGraMi algorithm, the program needs a function extendSub-
graph()to recursively extend frequent subgraphs, as follows. 

Algorithm: extendSubgraph 

Input: A frequent subgraph S, a frequency threshold t, a set of frequent 
edges FrequentEdges of G 
Output: All closed subgraphs in G extended from S 
1 cS ← ∅ //closed subgraphs list 
2  gS ← ∅ //generated subgraphs list 
3  fS ← ∅ //frequent subgraphs list 
4 foreach e ∈ FrequentEdges and v ∈ S do 
5   if e can extend u then 
6    Let Ext be the extension of S by adding e 
7    if Ext is not already generated then 
8    gS ← gS ∪ Ext 
9 clo ← true //a condition for being a closed subgraph 
10  foreach g ∈ gS do 
11   if sG(g)≥ f then 
12   fS ← fS ∪ g 
13   if sG(g)=sG(S) then 
14    clo ← false 
15 if clo = true then 
16  cS ← cS ∪ S 
17 foreach S’ ∈ fS do 
18  cS ← cS ∪ extendSubgraph(e,f,FrequentEdges,G) 
19 return cS 
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Fig. 4. Multi-threads execute simultaneously 

Consider the example given in Figure 4, instead of sequentially processing each edge 
in this 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list as the CloGraMi algorithm, our parallel algorithm will 
generate three threads to process these three edges at the same time. The main program 
then collects the results from these three threads to get the total results. The three phases 
are generating all three threads, parallel mining and collecting the results of PCGraMi 
algorithm. The first and third phases, which are generating threads and collecting the 
results, require a very short time compared to the mining phase, only from 1% to 2% 
of the total time for the program. As such, the cost of these two extra phases of our 
PCGraMi algorithm is insignificant compared to CloGraMi, but they significantly re-
duce the time of the mining phase. The limitation of parallel approaches is the memory 
requirements. Because the main program needs to store and process multiple candidate 
subgraphs at the same time, more storage space is needed for parallel mining than se-
quential processing. 

5 Experimental Results 

To demonstrate the effectiveness of our parallel strategy, we record and compare the 
running times for new algorithm PCGraMi with the original CloGraMi algorithm. All 
of our experiments were carried out on a multi-core personal computer running the 
Windows 10 operating system, equipped with a Core i5 CPU having four physical cores 
3.2Ghz, eight threads, JavaSE Development Kit 8. A computer with four physical cores 
can handle up to four threads at the same time, so we implemented and compared the 
performance of the new algorithm PCGraMi with two threads and four threads and 
compared the results to those obtained with the sequential algorithm CloGraMi. With 
the two versions of PCGraMi (PCGraMi_2 and PCGraMi_4), we try to reduce the 
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frequency thresholds t until they cannot execute, then we collect the results to show the 
efficiency of our method. Our experiments were performed on six different sized graph 
datasets, including directed and undirected graphs, as shown in Table 2. 

Table 2. The features of six real datasets. 

Datasets Type Nodes Node 
labels Edges Edge 

labels 
MiCo Undirected 100,000 29 1,080,298 106 
GitHub social network Undirected 37,700 60 289,003 60 
Facebook Undirected 4,389 20 88,235 36 
p2p-Gnutella09 Directed 8,114 25 26,013 40 
CiteSeer Directed 3,312 6 4,732 101 
Email-Eu-core network Directed 1,005 50 25,571 50 

 
- With the MiCo dataset (Figure 5.a) [1], [2]: This is an undirected data set describing 
Microsoft co-authoring information with over one million edges and 100,000 nodes. 
The nodes in this dataset represent all Microsoft authors and their labels are the authors’ 
interests. A collaboration between a pair of authors is represented as an edge, the edge’s 
label represents the number of co-authored articles. This is a large dataset, so the mining 
thresholds are also high. There are only two edges in the 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list, so our 
parallel strategy generates only two processing threads corresponding to these two 
edges. The running time of the PCGraMi parallel algorithm with two threads is from 
80% to 83% of that needed by the CloGraMi algorithm at the survey thresholds, and 
with four threads is roughly 71%. At the final threshold t = 9,250, CloGraMi needs 
1,505.372 seconds for the mining process, while PCGraMi (with 4 threads) only needs 
1,081.115 seconds. 

 MiCo GitHub social network Facebook 
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Support threshold t Support threshold t Support threshold t 

 (a) (b) (c) 
Fig. 5. The running time on the undirected datasets. 

- With the GitHub social network dataset (Figure 5.b) [12]: This is an undirected me-
dium size dataset collected in June 2019 using the public API. This dataset represents 
the network of GitHub developers, the nodes in this graph represent developers, while 
the edges describe the mutual follower relationships between a pair of developers. This 
network dataset can be obtained from https://snap.stanford.edu/data/. It consists of 
37,700 nodes and 289,003 edges. PCGraMi with two threads can reduce the running 
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time to 72% of that needed by CloGraMi. The maximum running time (with four 
threads) can be decreased to 61% of that needed by the CloGraMi algorithm at 𝜏 = 55, 
at the last threshold 𝜏 = 45, CloGraMi needs 458.485 seconds, while PCGraMi only 
needs 300.211 seconds to complete the process. 
- With the Facebook dataset (Figure 5.c) [2], [25]: This directed dataset was obtained 
at: http://snap.stanford.edu/data/, and consists of 4,389 nodes, 88,235 edges, which are 
the 'circles' (or 'friends lists') of the Facebook social network. The data is collected from 
the social network user surveyed through the Facebook app. User data has been anon-
ymized by Facebook, replacing each user’s internal ids with a new value. Our new 
PCGraMi algorithm can reduce the running time to 66% that needed by the original 
CloGraMi algorithm with two processing threads, and to 56% with four threads, at the 
last threshold 𝜏 = 120, CloGraMi needs 434.768 seconds to process while PCGraMi 
with four threads takes only 251.663 seconds. 

 p2p-Gnutella09 CiteSeer Email-Eu-core network 
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Support threshold t Support threshold t Support threshold t 

 (a) (b) (c) 
Fig. 6. The running time on three directed datasets. 

- With p2p-Gnutella09 dataset (in Figure 6.a) [2], [22]: This graph dataset was obtained 
from http://snap.stanford.edu/data/, and is a directed graph dataset of a sequence of 
snapshots from the Gnutella peer-to-peer file sharing network. All nine snapshots were 
collected in August 2002 from the Gnutella network. Hosts in this network are repre-
sented as nodes in the dataset, while the connections among the Gnutella hosts are the 
edges of pairs of nodes. This dataset has 8,114 nodes with 26,013 directed edges. Our 
improved algorithm has a running time equal to approximately 87% (with two simulta-
neous threads) and 79% (with four processing threads) of that needed by CloGraMi. At 
the threshold 𝜏 = 35, the original algorithm CloGraMi needs 590.122 seconds, while 
PCGraMi_4 needs 473.134 seconds to complete the mining process. 
- With the CiteSeer dataset (Figure 6.b) [1], [23]: This directed graph dataset includes 
3,312 nodes (each node in this graph corresponds to a publication) and 4,732 directed 
edges, they are citations between a pair of publications (citations are directed edges in 
this graph). In this graph, each node has a label representing a field of computer science. 
Each directed edge evaluates the similarity (labelling from 0 to 100) to between a pair 
of publications. Our proposed algorithm has the running time reduced by approximately 
73% (with two threads) and 63% (with four threads) of CloGraMi’s consumption, at 
the last threshold 𝜏 = 12, the original algorithm CloGraMi needs 403.475 seconds but 
the PCGraMi parallel algorithm with four threads only needs 258.119 seconds. 
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- With the Email-Eu-core network dataset (Figure 6.c) [12]: This dataset can be ac-
quired from https://snap.stanford.edu/data/. It is a medium size directed graph consist-
ing of 1,005 nodes with 25,571 directed edges. This network in a large European re-
search institution was generated by the users using email data, but the users’ infor-
mation was anonymized for the sake of privacy. Each directed edge means that a user 
in this institution sent at least one email to another user. The parallel algorithm’s run-
ning time can be reduced to 80% (with two parallel threads) and 71% (with four pro-
cessing threads) of CloGraMi’s, at the last threshold t = 10, CloGraMi needs 504.182 
seconds while PCGraMi with 4 threads only needs 358,198 seconds. 

6 Conclusion and Future Work 

We have surveyed new algorithms and the literature on frequent subgraph mining and 
closed subgraph mining in recent years. There are few studies on closed subgraph min-
ing, and such algorithms are very costly to implement. Therefore, we improved our 
closed subgraph mining algorithm CloGraMi by proposing an efficient parallel strat-
egy, which is to concurrently explore multiple subgraphs at the same time using multi-
threading. This parallel strategy can reduce the running time of the mining process. We 
conducted several experiments and compared PCGraMi with the original algorithm 
CloGraMi on six real datasets with different sizes (both directed and undirected), our 
new parallel algorithm has proved to overcome at all thresholds and on all selected 
datasets. 
In the future, we have two promising research directions for closed subgraph mining: 
applying a parallel strategy to high-performance computing (HPC) to use the compu-
ting power to mine larger graphs with a smaller frequency threshold, and proposing an 
efficient pruning strategy for non-closed subgraphs that reduces the memory require-
ments of current algorithms. 
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