
Frequent Closed Subgraph Mining: A Multi-thread
Approach

Lam B. Q. Nguyen1, Ngoc-Thao Le2, Hung Son Nguyen3, Tri Pham4, Bay Vo2,*

1 Faculty of Information and Communications, Kien Giang University, Kien Giang, Vietnam
2 Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam

3 Faculty of Mathematics, Informatics and Mechanics, University of
Warsaw, Warsaw, Poland

4 Institute for Computational Science and Technology (ICST) – Ho Chi Minh City, Vietnam

Abstract. Frequent subgraph mining (FSM) is an interesting research field and
has attracted a lot of attention from many researchers in recent years, in which
closed subgraph mining is a new topic with many practical applications. In the
field of graph mining, GraMi (GRAph MIning) is considered state-of-the-art, and
many algorithms have been developed based on the improvement of this ap-
proach. In 2021, we proposed the CloGraMi algorithm based on GraMi to mine
closed frequent subgraphs from a large graph rapidly and efficiently. However,
with NP time complexity and extremely high cost in terms of running time, graph
mining is always a challenging problem for all researchers. In this paper, we pro-
pose a parallel processing strategy aiming to improve the execution speed of our
CloGraMi algorithm. Our experiments on six datasets, including both undirected
and directed graphs, with different sizes, including large, medium and small,
show that the new algorithm significantly reduces running time and improves
performance, and has better performance compared to the original algorithm.

Keywords: Subgraph Mining; Closed Subgraph Mining; Multi-thread; Parallel.

1 Introduction

Because graphs have a non-linear structure with NP complexity [1], [2], [3], graph min-
ing has always been an interesting and challenging research area. Graphs are used to
simulate, store, analysis and solve a wide variety of problems in both the scientific and
commercial fields [4], [5], [6]. Graph mining [7], [8], [9], [10] is the premise for many
different studies and practical applications, in areas such as social networks, maps anal-
ysis, telephone networks, bioinformatics, chemical compounds, crime investigation,
etc. Closed frequent subgraph mining [11], [12], [13] is a relatively new field in this
context, with a few studies already having been published [11], [12], [13], [14], [15],
[16]. Extending this field is our motivation to study and research this topic.
For example, and as in [12], a commercial company needs to analyze data that has been
collected from its customers, and the sales department needs to find the groups of loyal
customers (who frequently buy the company’s products) and the features of the rela-
tionships among the customer groups in order to have a flexible business strategy. In

2

Figure 1, graph G is used to simulate all the customers in the dataset, and each node
represents a customer of this company (labeled A, B, C or D), in which each edge in
the graph represents the relationship of each pair of customers (labeled x, y, z, t or w).
The two subgraphs S1, S2 are two samples of groups of loyal customers.

Fig. 1. G – a large graph – and its two subgraphs S1 and S2

The above example leads to very useful problems in practice, in which users need to
find all the groups of loyal customers as well as the largest number of purchases for
that group, as this can help the sales department to adjust the business strategies of the
company. This problem is useful not only for business [3], [17], but also in many other
fields [18], [19], [20], [21] such as recommendation systems, crime investigation, in-
formation retrieval systems, graph clustering, decision support systems, traffic flow,
map model analysis, etc.
In 2014, the GraMi algorithm [1], [2], [22], [23] was proposed with the aim to effec-
tively mine all frequent subgraphs in a large graph. And then, in 2020, we introduced
the SuGraMi algorithm [2] based on GraMi, which can find all frequent subgraphs and
their support. In 2021, we proposed an algorithm to mine closed frequent subgraphs,
the CloGraMi algorithm [12], based on SuGraMi. In this paper, our contribution is pro-
posing an effective strategy to improve our CloGraMi algorithm by parallel processing,
it aims to reduce the running time, and we call it PCGraMi (Parallel Closed Graph
Mining).
Our paper consists of six sections: Section 1 introduces the problem of closed graph
mining and our contribution; Section 2 surveys relevant algorithms; Section 3 consists
of the main definitions in the field of graph mining; Section 4 presents the PCGraMi
algorithm in detail; Section 5 describes the results of our evaluation studies; Finally,
the conclusions and future work are discussed in Section 6.

2 Related Work

The GraMi algorithm [1], [2], [3] was proposed in 2014 as a fast frequent subgraph
mining algorithm in a single large graph. This algorithm solves the FSM problem by
introducing a new technique to store only templates of generated candidates. It searches

3

isomorphisms and only marks the corresponding values in domains of those templates,
without enumerating all the occurrences of each candidate subgraph (corresponding
isomorphisms of this subgraph [1], [2], [24], [25]) from a large graph. Because of this
new technique, GraMi is different from previous grow-and-store methods [24], [26].
GraMi has modelled the support of a subgraph as a CSP (constraint satisfaction prob-
lem) model [1], [2], [22]. The GraMi algorithm iteratively unfolds the CSP model until
it discovers a minimum set of occurrences for a candidate subgraph to be correctly
identified as a frequent subgraph. To reduce the search time, all remaining occurrences
are ignored. This process will repeat by extending (adding new edges) a frequent sub-
graph until no new frequent subgraphs are found.
In 2016, a parallel FSM algorithm called ScaleMine [27] was proposed, and this applies
distributed computing to the GraMi algorithm. ScaleMine is a two-phase approach [27],
[28]: first, the algorithm performs an approximation to quickly identify the frequent
subgraphs with high occurrence probability in the dataset; then, the exact calculations
are performed using the results of the approximation phase to achieve better load bal-
ancing [29]. Experiments using this algorithm have extended to 8,192 cores of the Cray
XC40 system, enabling it to solve a large graph with one billion edges and having faster
mining performance than existing solutions. In 2020, we proposed a parallel approach
PaGraMi [2] based on the original algorithm GraMi, using multi-thread processing in
a computer with a multi-core CPU, combined with the SoGraMi algorithm [2] to reduce
the search space of GraMi by pruning infrequent candidate subgraphs.
The process of generating candidate subgraphs needs lots of memory to store a huge
number of candidates [1], [3], [30], [31]. Algorithms such as GraMi [1], SoGraMi [2],
WeGraMi [25] and CCGraMi [23] have their own efficient strategies for pruning and
thus reducing the number of infrequent candidates. The goals of all the mentioned al-
gorithms are to reduce the costs of the generating phase [3], and improve the efficiency
of memory usage and running time. Other parallel algorithms, such as ScaleMine [27]
and Arabesque [32], have been proposed as new parallel algorithms using a message
transfer interface on distributed systems, but they still lack a load balancing method for
clusters or their machines in the system [3].
In 2018, the SSIGRAM algorithm (Spark-based Single Graph Mining) [33] was pro-
posed as a parallel algorithm for FSM based on Spark. It parallelizes the extending and
evaluating the support of subgraphs on all distributed "workers". In addition, a new
heuristic-based search strategy was proposed with three optimizations: (1) load balanc-
ing, (2) top-down pruning and (3) pre-search pruning during support evaluation, help-
ing to significantly improve performance. The support evaluation of candidates are sim-
ultaneously carried out at the “executors” in the Spark cluster. The evaluation results
demonstrate that the SSIGRAM algorithm can perform significantly better than GraMi
algorithm on all four different real datasets. Furthermore, it is capable of operating at
lower support thresholds. While the SIGRAM [34] algorithm enumerates all interme-
diate steps using the maximum independent sets (MIS) measurements. However, these
steps have NP complexity, thus the method is extremely expensive in practice [29].
In 2021, we introduced the CCGraMi algorithm [23], which is based on connected com-
ponents in a large graph with two main contributions: finding isomorphisms of sub-
graphs in each connected component of the large graph instead of searching in the

4

whole large graph to reduce searching time, and early pruning of the domains of candi-
date subgraphs based on the size of the connected components to reduce storage space
and searching time on those domains. We also proposed the CloGraMi algorithm in
2021 [12] to mine closed subgraphs, moreover we have three effective strategies aiming
to optimize this algorithm: a level order traversal strategy to reduce the time for the
search, early determining of closed subgraphs, and setting a constraint for pruning of
candidates that are non-closed subgraphs.
In 2022, because the GraMi algorithm [1] lacked an effective strategy to balance its
search space, we introduced the BaGraMi algorithm [22] to address this issue. This
decreases the size of both the search space for all generated subgraphs and domain for
each candidate subgraph [35], and thus helps balance the search space of the original
GraMi algorithm [2]. The main contributions of this algorithm are to reduce the invalid
assignments in the domain of a candidate and the number of infrequent subgraphs, en-
hancing the mining performance. Our algorithm not only reduces the running time but
also the memory requirements of the mining process.
According to our survey [3] in 2022, most related studies focus on FSM [7], [8], [9],
[10], [36], and there are few algorithms in the field of closed frequent subgraph mining
[11], [14], [13], [15], [16], [37], [38], and thus we propose to improve our CloGraMi
algorithm by using a parallel processing strategy to improve the execution speed of this
algorithm on multi-core personal computers. The goal of this algorithm is to boost the
performance of the mining closed frequent subgraphs from a single large graph process.

3 Definitions

Definition 1. [1], [2], [12]: Let 𝐺 be a large graph, 𝐺 = (𝑉, 𝐸, 𝐿). In which, 𝑉 denotes
the set of all the nodes, E denotes the set of all the edges	and 𝐿 is a function to assign
labels to all the nodes/edges, respectively.
Definition 2. [1], [12], [22]: A graph 𝑆 = (𝑉!, 𝐸!, 𝐿!) is a subgraph of 𝐺 = (𝑉, 𝐸, 𝐿) iff
𝑉! ⊆ 𝑉, 𝐸! ⊆ 𝐸 and 𝐿!(𝑣) = 𝐿(𝑣) for ∀𝑣 ∈ 𝑉!; 𝐿𝑆((𝑢, 𝑣)) = 𝐿((𝑢, 𝑣)) for ∀(𝑢, 𝑣) ∈
𝐸𝑆.
Definition 3. [1], [12], [23]: Let 𝑆 = (𝑉!, 𝐸!, 𝐿!) be a subgraph of 𝐺 = (𝑉, 𝐸, 𝐿). A
subgraph isomorphism 𝐼 of 𝑆 to 𝐺 is an injective function 𝑓:	𝑉! → 𝑉 satisfying:

(a) 𝐿!(𝑣) = 𝐿(𝑓(𝑣)), ∀𝑣 ∈ 𝑉!
(b) (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸	and	𝐿!(𝑢, 𝑣) = 𝐿(𝑓(𝑢), 𝑓(𝑣)), ∀(𝑢, 𝑣) ∈ 𝐸!.

Example 1: In Figure 1 [12], the subgraph 𝑆" has three distinct isomorphisms 𝐼#, 𝐼" and
𝐼$ as presented in Table 1.

Table 1. Three distinct isomorphisms of S2.

Subgraph S2 v0 v1
Isomorphism I1 u0 u1
Isomorphism I2 u2 u3
Isomorphism I3 u6 u7

5

The notation 𝑢 is used to indicate all the nodes in the large graph 𝐺 and the notation 𝑣
is used to indicate all the nodes in the subgraph 𝑆. Each node 𝑣 ∈ 𝑉! has a domain 𝐷
containing all the nodes 𝑢 that have the same node label with 𝑣 and they can be assigned
to 𝑣. The assignments 𝑢 to 𝑣 are used to list, mark and count the number of isomor-
phisms of subgraph 𝑆 in the large graph 𝐺.
Example 2: As shown in Figure 2, the domain of 𝑣% ∈ 𝑆 is 𝐷 = {𝑢%, 𝑢", 𝑢&, 𝑢'}.
Definition 4. [22]: An assignment of a node 𝑢 ∈ 𝑉(in the domain of node 𝑣 ∈ 𝑉! is
valid if there exists an isomorphism 𝐼 that assigns 𝑢 to 𝑣, invalid otherwise.
Example 3: In Figure 2, the nodes 𝑢%, 𝑢", and 𝑢& in the domain are valid assignments
because there exist three isomorphisms 𝐼#, 𝐼" and 𝐼$ assigning 𝑢%, 𝑢", and 𝑢& to 𝑣%,
respectively; 𝑢'	is an invalid assignment in the domain of 𝑆"	because there is no iso-
morphism that assigns 𝑢' to 𝑣%.
Definition 5. [2], [22]: The support of 𝑆 in 𝐺 (denoted by 𝑠((𝑆)) is the minimum
number of all distinct valid assignments of ∀𝑣 ∈ 𝑉!. In other words:
𝑠((𝑆) = 𝑚𝑖𝑛{𝑡|𝑡 = |𝐹(𝑣)|, ∀𝑣 ∈ 𝑉!}.

Example 4 [2], [12]: The support of subgraph 𝑆" in large graph 𝐺:
 𝑠((𝑆") = 𝑚𝑖𝑛(|𝐹(𝑣%)|, |𝐹(𝑣#)|, |𝐹(𝑣")|)
 = 𝑚𝑖𝑛(3, 3, 3) = 3.

Fig. 2. Valid and invalid assignments for a subgraph

Definition 6. [3]: A subgraph 𝑆 in a large graph 𝐺 is called a frequent subgraph if
𝑠((𝑆) ≥ 𝜏, in which 𝜏 is a given frequency threshold.
Remark: We use 𝜏 = 2 for all our examples in this paper.
Example 5 [12]: As 𝑠((𝑆") = 3 ≥ 𝜏, it is a frequent subgraph in 𝐺.
Definition 7. [3], [12]: A frequent subgraph 𝑆 is a closed frequent subgraph if there
does not exist any supergraph 𝑆’ (𝑆 ⊂ 𝑆’) whose the support is equal to that of 𝑆 (called
as “closed subgraph” in short).
Example 6 [12]: 𝑆# is a non-closed subgraph because 𝑆# ⊂ 𝑆"	and 𝑠((𝑆") = 𝑠((𝑆#) =
3, and 𝑆" is a closed subgraph (see detail in [12]).
In the CloGraMi algorithm [12], we propose traversing the search tree by level to iden-
tify closed subgraphs early, in which in order to determine if the subgraph S at level n
on the search tree is a closed subgraph the mining program only needs to compare S
with frequent subgraphs at level (n + 1) in the search tree, instead of comparing this
frequent subgraph with all mined frequent subgraphs. In this work, a new parallel pro-
cessing strategy for our CloGraMi algorithm is proposed. Whereas, each branch in the
search tree corresponding to an edge in the FrequentEdge list [2], [12] will be assigned
to a concurrent thread, thus many branches in the search tree will be executed simulta-
neously, each frequent subgraph at level n on the branches will be mined and compared
with the frequent subgraph at level (n + 1). In this PCGraMi algorithm, many frequent

6

subgraphs are generated and compared at the same time to find out the closed subgraphs
to decrease the running time in the comparison to CloGraMi, our original algorithm.

4 Proposed Method

In the SuGraMi algorithm [2], as 𝑠((𝑆) ≤ 𝑠((𝑆′) with 𝑆′ be a child of 𝑆 on the search
tree was proven, based on this Downward Closure Property (DCP) [25] we introduced
a level-wise traversal strategy [12] on the search tree, which can quickly identify closed
subgraphs. Each frequent subgraph 𝑆 of size 𝑘 compares its support only with sub-
graphs 𝑆′ with size (𝑘 + 1) being children of 𝑆 [12]. We propose a parallel processing
strategy to improve the speed of the CloGraMi algorithm in this paper, in which each
branch of the search tree will be assigned to a thread, the threads will generate candidate
subgraphs, check the support, and determine closed subgraphs on the same branch of
the search tree.
Example 7: For the graph 𝐺 in Figure 1, after evaluating all edges’ support and pruning
the infrequent edges, we have a FrequentEdges list consisting of edges as in Figure 3:

Fig. 3. The frequent edges list

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 = {A x B; B y C; C z D}
When the mining process generates the 𝑖)* thread to process the edge 𝑒+ in the
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list, the edges 𝑒%, 𝑒#,⋯, 𝑒+,# have already been processed in other
threads, so they will be removed from the 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list of this thread [2] as in
Figure 4, and thus main program can implement without generating duplicate sub-
graphs.
Our algorithm consists of three steps.
(1) Each edge in the 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list is assigned to a separate thread (Line 4 to
Line 8).
(2) These threads are then executed simultaneously (Line 6 and Line 7) based on the
number of available processor cores. The running time of this parallel phase will be the
time of the largest thread in the list (usually the first thread because it needs to combine
with all remaining edges).
(3) Collecting closed subgraphs (Line 9 and Line 10) returned from these threads (col-
lection time is very small compared to mining time).

7

Algorithm: PCGraMi
Input: A graph G, a frequency threshold t
Output: All closed subgraphs S of G
1 ClosedSubgraphsList ← ∅ //the list of all closed subgraph in graph
G
2 Let FrequentEdges is a set of frequent edges in G
3 Let R be the result set for all simultaneously threads
4 foreach e ∈ FrequentEdges do
5 Generate a new thread and do
6 r ← ∅
7 r ← r ∪ extendSubgraph (e, G, τ, FrequentEdges)
8 Remove e from FrequentEdges
9 foreach r ∈ R do
10 ClosedSubgraphsList ← ClosedSubgraphsList ∪ r
11 return ClosedSubgraphsList

At Line 7 in our PCGraMi algorithm, the program needs a function extendSub-
graph()to recursively extend frequent subgraphs, as follows.

Algorithm: extendSubgraph

Input: A frequent subgraph S, a frequency threshold t, a set of frequent
edges FrequentEdges of G
Output: All closed subgraphs in G extended from S
1 cS ← ∅ //closed subgraphs list
2 gS ← ∅ //generated subgraphs list
3 fS ← ∅ //frequent subgraphs list
4 foreach e ∈ FrequentEdges and v ∈ S do
5 if e can extend u then
6 Let Ext be the extension of S by adding e
7 if Ext is not already generated then
8 gS ← gS ∪ Ext
9 clo ← true //a condition for being a closed subgraph
10 foreach g ∈ gS do
11 if sG(g)≥ f then
12 fS ← fS ∪ g
13 if sG(g)=sG(S) then
14 clo ← false
15 if clo = true then
16 cS ← cS ∪ S
17 foreach S’ ∈ fS do
18 cS ← cS ∪ extendSubgraph(e,f,FrequentEdges,G)
19 return cS

8

Fig. 4. Multi-threads execute simultaneously

Consider the example given in Figure 4, instead of sequentially processing each edge
in this 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list as the CloGraMi algorithm, our parallel algorithm will
generate three threads to process these three edges at the same time. The main program
then collects the results from these three threads to get the total results. The three phases
are generating all three threads, parallel mining and collecting the results of PCGraMi
algorithm. The first and third phases, which are generating threads and collecting the
results, require a very short time compared to the mining phase, only from 1% to 2%
of the total time for the program. As such, the cost of these two extra phases of our
PCGraMi algorithm is insignificant compared to CloGraMi, but they significantly re-
duce the time of the mining phase. The limitation of parallel approaches is the memory
requirements. Because the main program needs to store and process multiple candidate
subgraphs at the same time, more storage space is needed for parallel mining than se-
quential processing.

5 Experimental Results

To demonstrate the effectiveness of our parallel strategy, we record and compare the
running times for new algorithm PCGraMi with the original CloGraMi algorithm. All
of our experiments were carried out on a multi-core personal computer running the
Windows 10 operating system, equipped with a Core i5 CPU having four physical cores
3.2Ghz, eight threads, JavaSE Development Kit 8. A computer with four physical cores
can handle up to four threads at the same time, so we implemented and compared the
performance of the new algorithm PCGraMi with two threads and four threads and
compared the results to those obtained with the sequential algorithm CloGraMi. With
the two versions of PCGraMi (PCGraMi_2 and PCGraMi_4), we try to reduce the

9

frequency thresholds t until they cannot execute, then we collect the results to show the
efficiency of our method. Our experiments were performed on six different sized graph
datasets, including directed and undirected graphs, as shown in Table 2.

Table 2. The features of six real datasets.

Datasets Type Nodes Node
labels Edges Edge

labels
MiCo Undirected 100,000 29 1,080,298 106
GitHub social network Undirected 37,700 60 289,003 60
Facebook Undirected 4,389 20 88,235 36
p2p-Gnutella09 Directed 8,114 25 26,013 40
CiteSeer Directed 3,312 6 4,732 101
Email-Eu-core network Directed 1,005 50 25,571 50

- With the MiCo dataset (Figure 5.a) [1], [2]: This is an undirected data set describing
Microsoft co-authoring information with over one million edges and 100,000 nodes.
The nodes in this dataset represent all Microsoft authors and their labels are the authors’
interests. A collaboration between a pair of authors is represented as an edge, the edge’s
label represents the number of co-authored articles. This is a large dataset, so the mining
thresholds are also high. There are only two edges in the 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠 list, so our
parallel strategy generates only two processing threads corresponding to these two
edges. The running time of the PCGraMi parallel algorithm with two threads is from
80% to 83% of that needed by the CloGraMi algorithm at the survey thresholds, and
with four threads is roughly 71%. At the final threshold t = 9,250, CloGraMi needs
1,505.372 seconds for the mining process, while PCGraMi (with 4 threads) only needs
1,081.115 seconds.

 MiCo GitHub social network Facebook

Ti
m

e
in

 se
co

nd
s

Support threshold t Support threshold t Support threshold t

 (a) (b) (c)
Fig. 5. The running time on the undirected datasets.

- With the GitHub social network dataset (Figure 5.b) [12]: This is an undirected me-
dium size dataset collected in June 2019 using the public API. This dataset represents
the network of GitHub developers, the nodes in this graph represent developers, while
the edges describe the mutual follower relationships between a pair of developers. This
network dataset can be obtained from https://snap.stanford.edu/data/. It consists of
37,700 nodes and 289,003 edges. PCGraMi with two threads can reduce the running

0

400

800

1.200

1.600

9650 9550 9450 9350 9250

CloGraMi

PCGraMi_2

PCGraMi_4

0

100

200

300

400

500

65 60 55 50 45

CloGraMi
PCGraMi_2
PCGraMi_4

0

100

200

300

400

500

140 135 130 125 120

CloGraMi
PCGraMi_2
PCGraMi_4

10

time to 72% of that needed by CloGraMi. The maximum running time (with four
threads) can be decreased to 61% of that needed by the CloGraMi algorithm at 𝜏 = 55,
at the last threshold 𝜏 = 45, CloGraMi needs 458.485 seconds, while PCGraMi only
needs 300.211 seconds to complete the process.
- With the Facebook dataset (Figure 5.c) [2], [25]: This directed dataset was obtained
at: http://snap.stanford.edu/data/, and consists of 4,389 nodes, 88,235 edges, which are
the 'circles' (or 'friends lists') of the Facebook social network. The data is collected from
the social network user surveyed through the Facebook app. User data has been anon-
ymized by Facebook, replacing each user’s internal ids with a new value. Our new
PCGraMi algorithm can reduce the running time to 66% that needed by the original
CloGraMi algorithm with two processing threads, and to 56% with four threads, at the
last threshold 𝜏 = 120, CloGraMi needs 434.768 seconds to process while PCGraMi
with four threads takes only 251.663 seconds.

 p2p-Gnutella09 CiteSeer Email-Eu-core network

Ti
m

e
in

 se
co

nd
s

Support threshold t Support threshold t Support threshold t

 (a) (b) (c)
Fig. 6. The running time on three directed datasets.

- With p2p-Gnutella09 dataset (in Figure 6.a) [2], [22]: This graph dataset was obtained
from http://snap.stanford.edu/data/, and is a directed graph dataset of a sequence of
snapshots from the Gnutella peer-to-peer file sharing network. All nine snapshots were
collected in August 2002 from the Gnutella network. Hosts in this network are repre-
sented as nodes in the dataset, while the connections among the Gnutella hosts are the
edges of pairs of nodes. This dataset has 8,114 nodes with 26,013 directed edges. Our
improved algorithm has a running time equal to approximately 87% (with two simulta-
neous threads) and 79% (with four processing threads) of that needed by CloGraMi. At
the threshold 𝜏 = 35, the original algorithm CloGraMi needs 590.122 seconds, while
PCGraMi_4 needs 473.134 seconds to complete the mining process.
- With the CiteSeer dataset (Figure 6.b) [1], [23]: This directed graph dataset includes
3,312 nodes (each node in this graph corresponds to a publication) and 4,732 directed
edges, they are citations between a pair of publications (citations are directed edges in
this graph). In this graph, each node has a label representing a field of computer science.
Each directed edge evaluates the similarity (labelling from 0 to 100) to between a pair
of publications. Our proposed algorithm has the running time reduced by approximately
73% (with two threads) and 63% (with four threads) of CloGraMi’s consumption, at
the last threshold 𝜏 = 12, the original algorithm CloGraMi needs 403.475 seconds but
the PCGraMi parallel algorithm with four threads only needs 258.119 seconds.

0

100

200

300

400

500

600

55 50 45 40 35

CloGraMi

PCGraMi_2

PCGraMi_4

0

100

200

300

400

500

16 15 14 13 12

GraMi

PCGraMi_2

PCGraMi_4

0

100

200

300

400

500

600

14 13 12 11 10

CloGraMi

PCGraMi_2

PCGraMi_4

11

- With the Email-Eu-core network dataset (Figure 6.c) [12]: This dataset can be ac-
quired from https://snap.stanford.edu/data/. It is a medium size directed graph consist-
ing of 1,005 nodes with 25,571 directed edges. This network in a large European re-
search institution was generated by the users using email data, but the users’ infor-
mation was anonymized for the sake of privacy. Each directed edge means that a user
in this institution sent at least one email to another user. The parallel algorithm’s run-
ning time can be reduced to 80% (with two parallel threads) and 71% (with four pro-
cessing threads) of CloGraMi’s, at the last threshold t = 10, CloGraMi needs 504.182
seconds while PCGraMi with 4 threads only needs 358,198 seconds.

6 Conclusion and Future Work

We have surveyed new algorithms and the literature on frequent subgraph mining and
closed subgraph mining in recent years. There are few studies on closed subgraph min-
ing, and such algorithms are very costly to implement. Therefore, we improved our
closed subgraph mining algorithm CloGraMi by proposing an efficient parallel strat-
egy, which is to concurrently explore multiple subgraphs at the same time using multi-
threading. This parallel strategy can reduce the running time of the mining process. We
conducted several experiments and compared PCGraMi with the original algorithm
CloGraMi on six real datasets with different sizes (both directed and undirected), our
new parallel algorithm has proved to overcome at all thresholds and on all selected
datasets.
In the future, we have two promising research directions for closed subgraph mining:
applying a parallel strategy to high-performance computing (HPC) to use the compu-
ting power to mine larger graphs with a smaller frequency threshold, and proposing an
efficient pruning strategy for non-closed subgraphs that reduces the memory require-
ments of current algorithms.

Acknowledgement
This work was supported by Institute for Computational Science and Technology
(ICST) – Ho Chi Minh City and the Department of Science and Technology (DOST) –
Ho Chi Minh City under grant no. 23/2021/HĐ-QKHCN.

References

[1] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami: Frequent subgraph
and pattern mining in a single large graph,” Proc. VLDB Endow., vol. 7, no. 7, pp. 517–
528, 2014.

[2] L. B. Q. Nguyen, B. Vo, N.-T. Le, V. Snasel, and I. Zelinka, “Fast and scalable algorithms
for mining subgraphs in a single large graph,” Eng. Appl. Artif. Intell., vol. 90, p. 103539,
2020.

[3] L. B. Q. Nguyen, I. Zelinka, V. Snasel, L. T. T. Nguyen, and B. Vo, “Subgraph mining in
a large graph: A review,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., p. e1454, 2022.

[4] S. Velampalli and V. R. M. Jonnalagedda, “Frequent SubGraph Mining Algorithms:
Framework, Classification, Analysis, Comparisons,” in Data Engineering and Intelligent

12

Computing, Springer, 2018, pp. 327–336.
[5] A. Borrego, D. Ayala, I. Hernández, C. R. Rivero, and D. Ruiz, “CAFE: Knowledge graph

completion using neighborhood-aware features,” Eng. Appl. Artif. Intell., vol. 103, p.
104302, 2021.

[6] J. Fox, T. Roughgarden, C. Seshadhri, F. Wei, and N. Wein, “Finding cliques in social
networks: A new distribution-free model,” SIAM J. Comput., vol. 49, no. 2, pp. 448–464,
2020.

[7] Q. Song, Y. Wu, P. Lin, L. X. Dong, and H. Sun, “Mining summaries for knowledge graph
search,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 10, pp. 1887–1900, 2018.

[8] M. H. Chehreghani, T. Abdessalem, A. Bifet, and M. Bouzbila, “Sampling informative
patterns from large single networks,” Futur. Gener. Comput. Syst., vol. 106, pp. 653–658,
2020.

[9] Y. Chen, X. Zhao, X. Lin, Y. Wang, and D. Guo, “Efficient mining of frequent patterns on
uncertain graphs,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 2, pp. 287–300, 2018.

[10] R. Iqbal, F. Doctor, B. More, S. Mahmud, and U. Yousuf, “Big Data analytics and
Computational Intelligence for Cyber–Physical Systems: Recent trends and state of the art
applications,” Futur. Gener. Comput. Syst., vol. 105, pp. 766–778, 2020.

[11] J. Demetrovics, H. M. Quang, N. V Anh, and V. D. Thi, “An optimization of closed
frequent subgraph mining algorithm,” Cybern. Inf. Technol., vol. 17, no. 1, pp. 3–15, 2017.

[12] L. B. Q. Nguyen, L. T. T. Nguyen, I. Zelinka, V. Snasel, H. S. Nguyen, and B. Vo, “A
Method for Closed Frequent Subgraph Mining in a Single Large Graph,” IEEE Access,
2021.

[13] N. E. I. Karabadji, S. Aridhi, and H. Seridi, “A closed frequent subgraph mining algorithm
in unique edge label graphs,” in International Conference on Machine Learning and Data
Mining in Pattern Recognition, 2016, pp. 43–57.

[14] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,” in Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 286–295.

[15] A. Bendimerad, M. Plantevit, and C. Robardet, “Mining exceptional closed patterns in
attributed graphs,” Knowl. Inf. Syst., vol. 56, no. 1, pp. 1–25, 2018.

[16] N. Acosta-Mendoza, A. Gago-Alonso, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, and
J. E. Medina-Pagola, “Mining generalized closed patterns from multi-graph collections,”
in Iberoamerican Congress on Pattern Recognition, 2017, pp. 10–18.

[17] Y. Jia, J. Zhang, and J. Huan, “An efficient graph-mining method for complicated and noisy
data with real-world applications,” Knowl. Inf. Syst., vol. 28, no. 2, pp. 423–447, 2011.

[18] S. J. Nejad, F. Ahmadi-Abkenari, and P. Bayat, “A combination of frequent pattern mining
and graph traversal approaches for aspect elicitation in customer reviews,” IEEE Access,
vol. 8, pp. 151908–151925, 2020.

[19] F. Jie, C. Wang, F. Chen, L. Li, and X. Wu, “A Framework for Subgraph Detection in
Interdependent Networks via Graph Block-Structured Optimization,” IEEE Access, vol. 8,
pp. 157800–157818, 2020.

[20] H. Guan, Q. Zhao, Y. Ren, and W. Nie, “View-Based 3D Model Retrieval by Joint
Subgraph Learning and Matching,” IEEE Access, vol. 8, pp. 19830–19841, 2020.

[21] V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, “Private analysis of graph
structure,” ACM Trans. Database Syst., vol. 39, no. 3, pp. 1–33, 2014.

[22] L. Nguyen et al., “An efficient and scalable approach for mining subgraphs in a single large
graph,” Appl. Intell., pp. 1–15, 2022.

[23] L. B. Q. Nguyen, I. Zelinka, and Q. B. Diep, “CCGraMi: An Effective Method for Mining
Frequent Subgraphs in a Single Large Graph,” in MENDEL, 2021, vol. 27, no. 2, pp. 90–
99.

[24] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM, vol. 23, no. 1, pp. 31–
42, 1976.

13

[25] N.-T. Le, B. Vo, L. B. Q. Nguyen, H. Fujita, and B. Le, “Mining weighted subgraphs in a
single large graph,” Inf. Sci. (Ny)., vol. 514, pp. 149–165, 2020.

[26] M. Seeland, T. Girschick, F. Buchwald, and S. Kramer, “Online structural graph clustering
using frequent subgraph mining,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2010, pp. 213–228.

[27] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour, “Scalemine: Scalable
parallel frequent subgraph mining in a single large graph,” in SC’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, 2016, pp. 716–727.

[28] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,” in 2002 IEEE
International Conference on Data Mining, 2002. Proceedings., 2002, pp. 721–724.

[29] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient parallel graph algorithms
can be fast and scalable,” ACM Trans. Parallel Comput., vol. 8, no. 1, pp. 1–70, 2021.

[30] L. T. Thomas, S. R. Valluri, and K. Karlapalem, “Margin: Maximal frequent subgraph
mining,” ACM Trans. Knowl. Discov. from Data, vol. 4, no. 3, pp. 1–42, 2010.

[31] A. Farag, H. Abdelkader, and R. Salem, “Parallel graph-based anomaly detection technique
for sequential data,” J. King Saud Univ. Inf. Sci., vol. 34, no. 1, pp. 1446–1454, 2022.

[32] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboulnaga,
“Arabesque: a system for distributed graph mining,” in Proceedings of the 25th Symposium
on Operating Systems Principles, 2015, pp. 425–440.

[33] F. Qiao, X. Zhang, P. Li, Z. Ding, S. Jia, and H. Wang, “A parallel approach for frequent
subgraph mining in a single large graph using spark,” Appl. Sci., vol. 8, no. 2, p. 230, 2018.

[34] M. Kuramochi and G. Karypis, “Finding frequent patterns in a large sparse graph,” Data
Min. Knowl. Discov., vol. 11, no. 3, pp. 243–271, 2005.

[35] J. Kepner, “Keynote Talk: Large Scale Parallel Sparse Matrix Streaming Graph/Network
Analysis,” in Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and
Architectures, 2022, p. 61.

[36] S. Bouhenni, S. Yahiaoui, N. Nouali-Taboudjemat, and H. Kheddouci, “A survey on
distributed graph pattern matching in massive graphs,” ACM Comput. Surv., vol. 54, no. 2,
pp. 1–35, 2021.

[37] B. Güvenoglu and B. E. Bostanoglu, “A qualitative survey on frequent subgraph mining,”
Open Comput. Sci., vol. 8, no. 1, pp. 194–209, 2018.

[38] P. Fournier‐Viger et al., “A survey of pattern mining in dynamic graphs,” Wiley Interdiscip.
Rev. Data Min. Knowl. Discov., vol. 10, no. 6, p. e1372, 2020.

