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The restoration of the parity symmetry has been performed in the framework of the Highly
Truncated Diagonalization Approach suited to treat correlations in an explicitly particle-number
conserving microscopic approach. To do so we have assumed axial symmetry and used a generalized
Wick’s theorem due to Löwdin in a projection-after-variation scheme. We have chosen the Skyrme
SkM∗ energy-density functional for the particle-hole channel and a density-independent delta force
for the residual interaction. We have applied this approach in the region of the outer fission barrier
of the 240Pu nucleus. As a result, we have shown that the Kπ = 0+ fission isomeric state is statically
unstable against intrinsic-parity breaking modes, while the projection does not affect the energy at
the top of the intrinsic outer fission barrier. Altogether, this leads to an increase of the height of
the outer fission barrier–with respect to the fission isomeric state–by about 350 keV, affecting thus
significantly the fission-decay lifetime of the considered fission isomer.
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I. INTRODUCTION

It has been recognized very long ago that the second fission barriers of heavy nuclei are asymmetric under left-right
reflection (or intrinsic parity) symmetry [1]. Early self-consistent calculations [2] allowing to violate this symmetry
have demonstrated that the height of the second fission barrier of actinide nuclei could be substantially reduced in
that way. This has been confirmed in many further calculations (see, e.g., Ref. [3] using the Hartree–Fock+BCS
approach). This phenomenon is driven by the heavy fragment shell effects explaining thus [1], already at this early
stage of the fission process, the asymmetric pattern of the fragment mass yields (at low compound-nucleus energy)
which had been observed in this region long before.
In most microscopic or macro-microscopic calculations in the Uranium, Plutonium region, upon increasing the

elongation after the fission isomeric state, the intrinsic equilibrium solution becomes unstable with respect to the
left-right reflection symmetry and acquires rapidly a larger and larger octupole deformation which is stabilized at
a value corresponding, as just noted, to the most probable fragmentation. Yet, even though the intrinsic parity
may be broken within some auxiliary microscopic solutions under consideration, the parity of the physical solution
must be conserved during the fission process. For instance, if one describes the spontaneous fission of an even-even
fissioning nucleus as 240Pu, one should evaluate the fission barrier obtained upon projecting intrinsic solutions on
the desired parity.
The Highly Truncated Diagonalization Approach (HTDA) is designed to produce realistic correlated wave func-

tions in an approach which conserves explicitly the particle number and does not violate the Pauli principle [4].
While our approach takes stock of state-of-the-art energy-density functionals to describe microscopically mean-field
properties, it had been initiated long before in simpler terms by various groups (see, e.g., Refs. [5–7]). The aim of
this paper is to present the first application of this HTDA method in a projected-after-variation calculation of the
second fission barrier of 240Pu where the octupole deformation mode plays a very important role. It should be noted
that very few microscopic calculations of fission barriers with parity-symmetry restoration have been performed so
far. Among these calculations one can emphasize the systematic study of fission barriers carried out by Samyn and
collaborators [8] within the Skyrme–Hartree–Fock–Bogolyubov approach with separate particle-number and parity
projections using the BSk8 parametrization.
This paper is organized as follows. In Sec. II, a detailed presentation of the HTDA formalism and some of its

key aspects are given. The analysis of the numerical results is presented in Sec. III. In the last section, the main
results are summarized and some conclusions are drawn.

II. THEORETICAL FRAMEWORK

A. The Highly Truncated Diagonalization Approach

First let us briefly recall some general features of the HTDA approach which allows to treat on the same footing
various correlations, including pairing correlations, in an explicitly particle number conserving approach as discussed
in Refs. [4, 9–12]. In the next section the modifications to this standard approach, due to the projection method
introduced in this paper, will be discussed in detail.
We start from the Hamiltonian

Ĥ = K̂ + V̂ (1)

where K̂ is the kinetic energy and V̂ a two-body interaction. The latter may be density dependent as it is the
case for the Gogny or the Skyrme interactions and it includes the proton-proton Coulomb interaction. In so far as
the exchange term of the latter interaction is treated within the Slater approximation, as it is generally performed
in practice, some further spurious density dependence is included. For the sake of simplicity we will skip first the
density dependence of V̂ , the effect of which in practice will be discussed later.
We introduce an a priori arbitrary one-body potential Û . Of course, we will try and implement all what is

possible to incorporate in terms of guessed one-body properties of the correlated wave function in this auxiliary
mean field (generally through some simplified self-consistent approach). We then introduce the corresponding
auxiliary one-body Hamiltonian

Ĥ0 = K̂ + Û (2)

and its lowest-energy eigenstate |Φ0〉 which is a Slater determinant corresponding to a quasi-particle vacuum of
particle-hole type. In the following we will consider particle-hole excitations on this vacuum and define normal
products in terms of the related quasi-particle operators.

∗ Corresponding author: hao.tran@ttu.edu.vn
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Now we rewrite the original microscopic Hamiltonian as

Ĥ = ĤIQP + V̂res + 〈Φ0|Ĥ |Φ0〉 , (3)

where the independent quasi-particle Hamiltonian ĤIQP and the residual interaction V̂res are defined by

ĤIQP = Ĥ0 − 〈Φ0|Ĥ0|Φ0〉 (4)

V̂res = (V̂ − Û)− 〈Φ0|(V̂ − Û)|Φ0〉 . (5)

The Wick theorem applied to one- and two-body operators such as Û and V̂ , respectively, implies that

Û = : Û : + 〈Φ0|Û |Φ0〉 (6)

V̂ = : V̂ : + : V : + 〈Φ0|V̂ |Φ0〉 , (7)

where V denotes the one-body reduction of V̂ for the particle-hole vacuum |Φ0〉. Consequently one has

ĤIQP = : Ĥ0 : (8)

V̂res = : V̂ : + : V − Û : . (9)

Assuming that V̂ and Û reasonably produce similar descriptions of one-body properties of the studied nuclear
system, we make the approximation of neglecting the : V − Û : term.

In what follows we will use for V̂ a Skyrme nucleon-nucleon effective interaction (adding of course the Coulomb
interaction). As well known however, most of the parametrizations of such forces are not suited to treat correctly
pairing correlations, with some noticeable exceptions though, as, e.g., in the parametrization SkP of Ref. [13] and

SGII of Ref. [14]. In order to correct this deficiency one replaces the two-body interaction V̂ appearing in the

definition (9) of V̂res by a zero-range interaction V̂δ as it is usual for the description of such nuclear correlations.
We choose it density-independent since the ad hoc introduction here of a specific surface dependence is neither
theoretically ascertained nor phenomenologically justified. Specifically, while the Skyrme force will be used in the
particle-hole channel (in ĤIQP and to evaluate 〈Φ0|Ĥ |Φ0〉), the δ force will be used for the particle-particle (and

hole-hole) channel. In practice one thus approximates V̂res by

V̂res ≈ V̂δ− : V δ : −〈Φ0|V̂δ|Φ0〉 , (10)

where V δ is the one-body reduction of the V̂δ interaction for the particle-hole vacuum |Φ0〉.
It is to be noticed that the above replacement of the two-body interaction introduces some state dependence of

the Hamiltonian. In fact, introducing such an unwanted feature is unfortunately common, already at the Hartree-
Fock level, in the current state-of-the-art microscopic treatments of nuclear properties when using Gogny or Skyrme
energy-density functionals. The relevance of such a seemingly dubious approach should be ultimately validated, as
usual, by the phenomenological quality of the results so obtained.

The Hamiltonian (3) is diagonalized in the orthonormal many-body basis which includes the particle-hole vacuum
|Φ0〉 and n-particle-n-hole (npnh) excitations with respect to |Φ0〉, generically noted |Φn〉, with n ranging from 1
to some maximum order m. The correlated ground state can thus be written as

|Ψ〉 = χ0 |Φ0〉+
m∑

n=1

∑

i

χ(i)
n |Φ(i)

n 〉 , (11)

where i distinguishes the various npnh configurations.

A satisfactory HTDA description of pairing correlations in heavy stable nuclei has been generally obtained with
a many-body basis involving the particle-hole vacuum |Φ0〉 and pair excitations only. In this context the Cooper
pairs imply strictly time-reversed states, so that they have in particular the same charge. This approach deals then
with the so-called |Tz| = 1 or nn, pp pairing correlations, an approach which is relevant far from the N =Z line.
In contrast the np pairing correlations are important when studying nuclei near the N=Z line (see, e.g., a recent
thorough study in Ref. [15] within the HTDA framework).

Given the two approximations which have been made in V̂res (regarding :V − Û : and : V̂ :), the effect of including

density-dependent parts in the 2-body interaction is limited to the evaluation of 〈Φ0|Ĥ |Φ0〉 where they have been
fully taken into account.
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B. Projected energy

The state |Ψp〉 of definite parity p = ±1 is obtained by the action of the parity projection operator P̂p = 1
2 (1+p Π̂),

where Π̂ denotes the parity operator, onto the correlated (left-right asymmetrical) state |Ψ〉

|Ψp〉 = NpP̂p|Ψ〉 , (12)

where Np is a real normalization constant defined by

Np =
√
2
(
1 + p 〈Ψ|Π̂|Ψ〉

)− 1

2 . (13)

The resulting projected energy E(p) = 〈Ψp|Ĥ|Ψp〉 thus takes the form

E(p) =
〈Ψ|Ĥ|Ψ〉+ 〈Ψ̃|Ĥ |Ψ̃〉+ p

(
〈Ψ|Ĥ|Ψ̃〉+ 〈Ψ̃|Ĥ|Ψ〉

)

2
(
1 + 〈Ψ|Ψ̃〉

) , (14)

with |Ψ̃〉 = Π̂|Ψ〉.
The Hamiltonian Ĥ including a density-dependent effective interaction breaks the parity symmetry as long as

the density does it. So it seems contradictory to restore a symmetry for eigensolutions of a Hamiltonian which
breaks also this specific symmetry. Such a feature is of course not related nor restricted to the HTDA approach, but
is a consequence of the use of solution-dependent Hamiltonians as we have seen above when using, e.g., Skyrme or
Gogny energy-density functionals. Moreover the calculation of E(p) is rather involved since it requires to calculate
four matrix elements together with one overlap. For these two reasons one has chosen here to make some simplifying
assumptions on the hamiltonian and overlap kernels explained in the next subsection.

C. Approximate Hamiltonian and overlap kernels

In principle, there is a total arbitrariness in choosing the one-body potential Û to be introduced in the HTDA
Hamiltonian. However our solution of the secular equation is expanded in a truncated basis spanned by a subset
of A-particle Slater determinants. On the one hand such a limitation is embodied by the so-called single-particle
configuration space, which is the restricted set of eigenfunctions of the one-body Hamiltonian Ĥ0 used to define
particle and hole states. On the other hand the many-body configuration space is restricted, beyond the quasi-
particle vacuum |Φ0〉, to one-pair excitations with respect to |Φ0〉 written with a transparent notation as

|Φ2〉 = a†k′a
†

k̄′
ak̄ak|Φ0〉 . (15)

As a result our effective Hamiltonian does depend on the choice of the one-body potential Û .
Another Û -dependence of the Hamiltonian stems from the replacement of the Skyrme two-body interaction by

a delta force in the definition of the residual interaction V̂res. The one-body reduction of V̂ − V̂δ with respect to
the particle-hole vacuum state |Φ0〉 depends by definition on this state and then ultimately on the potential Û .

Similarly this replacement induces a Û -dependence of the expectation value of V̂ − V̂δ for |Φ0〉.
If the Hamiltonian were truly independent of the single-particle potential Û , we would have the freedom of

choosing Û according to the type of matrix elements involved in the calculation of E(p). Indeed, Û does not have
to assume a unique functional form and can be defined in a piecewise way in the one-body configuration space.
Because of the above discussed limitations, doing so becomes an approximation. We explain below what choice we
make to evaluate the Hamiltonian and and overlap kernels.

1. Diagonal terms of the hamiltonian kernel

The matrix element 〈Ψ|Ĥ |Ψ〉 is encountered in usual HTDA calculations. To calculate the contribution from

ĤIQP, we choose the one-body potential Û as the one-body reduction of V̂ associated with the particle-hole vacuum
|Φ0〉.
In the case of the matrix element 〈Ψ̃|Ĥ |Ψ̃〉, we replace the above potential Û with the parity-transformed operator

Ũ defined by

Ũ = Π̂Û Π̂ . (16)



5

The corresponding particle-hole vacuum is thus nothing but the mirror image |Φ̃0〉 = Π̂|Φ0〉 of the particle-hole

vacuum |Φ0〉 involved in the calculation of 〈Ψ|Ĥ |Ψ〉. Then the one-body reduction of V̂δ for |Φ̃0〉 is the parity-

transformed operator Ṽ δ = Π̂V δΠ̂. The resulting V̂res operator takes the form V̂res = V̂δ− : Ṽ δ : −〈Φ̃0|V̂δ|Φ̃0〉,
and the corresponding HTDA Hamiltonian H̃ is thus simply related to the previous Hamiltonian by a parity
transformation. Owing to the unitary character of Π̂ one thus obtains

〈Ψ̃|H̃ |Ψ̃〉 = 〈Ψ|Ĥ |Ψ〉 . (17)

2. Off-diagonal terms of the hamiltonian kernel

The off-diagonal matrix elements 〈Ψ|Ĥ |Ψ̃〉 and 〈Ψ̃|Ĥ |Ψ〉 are numerically difficult to evaluate, especially in the
context of the above discussed state-dependence of the Hamiltonian.

First of all, by making a judicious choice of the arbitrary one-body potential Û entering the definition of the

HTDA Hamiltonian, it is possible in general to equate the two matrix elements 〈Ψ|Ĥ |Ψ̃〉 and 〈Ψ̃|H̃ |Ψ〉. For that

it suffices to choose Ũ and the resulting particle-hole vacuum |Φ̃0〉 similarly to what has been discussed for the

diagonal term 〈Ψ̃|Ĥ|Ψ̃〉. Taking advantage of the arbitrariness of the auxiliary one-body potential used to define

the HTDA Hamiltonian, one may decide to consider the Hamiltonian H̃ for matrix elements between the bra 〈Ψ|
and the ket |Ψ̃〉, while using the Hamiltonian Ĥ for matrix elements between the bra 〈Ψ̃| and the ket |Ψ〉.
Actually, we have performed a further approximation prompted by two motivations. First, as already noted, we

introduce in practice through our approximate diagonalization process a spurious dependence of the Hamiltonian
of the auxiliary one-body potential Û . This makes the above choice somewhat arbitrary. Second, we face here the
problem usually encountered in configuration-mixing calculations using state-dependent Hamiltonians. It concerns,
as well known, the choice of the reference state defining this Hamiltonian when computing non-diagonal matrix
elements (where non-diagonal refers here to different reference states). One could think of using the one-body
reduction of the underlying two-body interaction with respect to the mixed density in the sense of, e.g., Ref. [16].
But, in practice, it so happens that the non-negative character of the corresponding local density (its matrix
elements which are diagonal in r-space) is not always warranted. This entails, of course, a problem to define the
density-dependent part of the Skyrme mean field and the Slater Coulomb exchange mean field. These fields involve,
often for the former and surely for the latter, a non-integer power of the density. Moreover let us state again that it
does not seem fully satisfactory, a priori, to use an auxiliary Hamiltonian breaking some symmetry in the process
of restoring this symmetry for its solution.

This is why we have made a further use of the arbitrariness of the one-body operator Û as follows. For a given
intrinsic solution in the collective deformation space as specified, e.g., by its axial quadrupole Q20 and octupole Q30

moments, we define the potential Û in the HTDA Hamiltonian as the one corresponding to the parity-symmetrical
vacuum solution (Q30 = 0) with the same value of the axial quadrupole moment.

In that case, since the two Hamiltonians Ĥ and H̃ are trivially identical, one gets

〈Ψ|Ĥ|Ψ̃〉 = 〈Ψ̃|Ĥ |Ψ〉 , (18)

and since these matrix elements are real, we deduce that the HTDA Hamiltonian is indeed hermitian.

Using Eqs. (17) and (18) we can rewrite the projected energy (14) as

E(p) =
〈Ψ|Ĥ |Ψ〉+ p〈Ψ|Ĥ|Ψ̃〉

1 + p 〈Ψ|Ψ̃〉
. (19)

To compute the matrix elements involving bras 〈Ψ| and kets |Ψ̃〉, we take stock of the fact that we have to deal with
matrix elements between Slater determinants. It is thus more appropriate to use the Löwdin approach of Ref. [17]
than the Balian-Brezin generalized Wick theorem [18]. Let us denote by |Φ〉 and |Φ′〉 two Slater determinants
built from single-particle states generically noted |φk〉 and |φ′

l〉, respectively, and by d the corresponding overlap
matrix. By definition the elements dkl of the overlap matrix are the overlaps 〈φk|φ′

l〉 of the occupied states |φk〉 of
the Slater determinant |Φ〉 with the occupied states |φ′

l〉 of |Φ′〉. Then the matrix elements of a one-body operator
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V̂1 and a two-body operator V̂2 between |Φ〉 and |Φ′〉 are given by [17]

〈Φ|V̂1|Φ′〉 =
∑

k∈Φ
l∈Φ′

(−1)k+l〈φk|V̂1|φ′
l〉DΦΦ′(k|l) (20)

〈Φ|V̂2|Φ′〉 =1

2

∑

k1 6=k2∈Φ
l1 6=l2∈Φ′

(−1)k1+k2+l1+l2〈φk1
φk2

|V̂1|φ′
l1φ

′
l2〉×

DΦΦ′(k1k2|l1l2) , (21)

where the sums run over the occupied states of the Slater determinants and DΦΦ′(k1 · · · kn|l1 · · · ln) is the minor
of order n of the overlap matrix associated with the lines k1, ..., kn and columns l1, ..., ln (i.e. the determinant of
the submatrix obtained by removing the lines k1, ..., kn and columns l1, ..., ln from the overlap matrix).

3. Overlap kernel

Within the HTDA framework the overlap 〈Ψ|Ψ̃〉 can be decomposed as

〈Ψ|Ψ̃〉 =χ2
0〈Φ0|Φ̃0〉+ 2χ0

N−1∑

k=1

χ
(k)
2 〈Φ0|Φ̃(k)

2 〉

+ 2
N−1∑

k=1

k−1∑

l=1

χ
(k)
2 χ

(l)
2 〈Φ(k)

2 |Φ̃(l)
2 〉

+
N−1∑

k=1

(χ
(k)
2 )2〈Φ(k)

2 |Φ̃(k)
2 〉 . (22)

The sums run over the N − 1 one-pair configurations, where N is the size of the many-body basis.
As demonstrated by Löwdin [17] the overlap of any two Slater determinants |Φ〉 and |Φ′〉 can be expressed as

the determinant of their overlap matrix d:

〈Φ|Φ′〉 = detd . (23)

The time-reversal invariance of the ĤIQP Hamiltonian allows us to split the space of one-body states in two
subspaces E and E∗ deduced one from the other by time-reversal symmetry. Due to the axial symmetry we may
define E as the subspace which incorporates all single-particle states |φi〉 such that 〈φi|ĵz |φi〉 > 0. The matrix d

can be written as a block-diagonal matrix defined as

d =

(
D 0

0 D∗

)
(24)

where D∗ is the complex conjugate of the submatrix D, so that 〈Φ|Φ′〉 =
∣∣ detD

∣∣2. Moreover, since all the occupied

states involved in D are eigenstates of the ĵz operator with positive eigenvalues Ωm (in ~ unit), the matrix D is
block diagonal:

D =




DΩ1
0 · · ·

0 DΩ2
0 · · ·

...
. . .

...

0 DΩm
0

· · · 0




, (25)

where the zeros have to be understood as null submatrices and the submatrices DΩ1
, ..., DΩm

correspond to Ω-
values for which the Slater determinants |Φ〉 and |Φ′〉 involve a finite number of occupied states with the quantum
number Ω. If sΩ (s′Ω resp.) denotes the number of occupied states in |Φ〉 (|Φ′〉 resp.) with the eigenvalue Ω of

the ĵz operator, then the dimension of the submatrix DΩ is the minimum of sΩ and s′Ω. If sΩ 6= s′Ω the overlaps
involving the occupied states of |Φ〉 or |Φ′〉–with the eigenvalue Ω–which do not appear in the submatrix DΩ vanish
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and so does the determinant of D. Therefore the non-vanishing overlaps 〈Φ|Φ′〉 are those for which sΩ = s′Ω for all
Ω-values occuring in both |Φ〉 and |Φ′〉. In this case, the overlap may be written as

〈Φ|Φ′〉 =
∏

m

∣∣detDΩm

∣∣2 , (26)

where the product runs over all positive values of Ω involved in |Φ〉 and |Φ′〉.

D. Some numerical aspects

The computational process which has been followed may be decomposed in three steps.
First we perform usual Hartree–Fock-plus-BCS (HF+BCS) calculations with a seniority force using an intrinsic

parity-breaking code developed some years ago [3]. The SkM∗ [19] effective interaction is used. The strengths of the
seniority force in the Tz = 1 and Tz = −1 channels only have been fixed [20] for the whole region of well-deformed
nuclei, and a given size of the valence space in which the BCS equations are solved, so that neutron and proton
odd-even binding-energy differences (for the ground states) are reasonably well reproduced. One must keep in
mind that the particle-number non-conserving HF+BCS approach serves merely here to define relevant one-body
auxiliary potentials Û .
In a second step the strengths of the δ residual interaction in the Tz = 1 and Tz = −1 channels have been fixed

for a given nucleus by relying on the phenomenological quality of our HF+BCS calculations (as hinted, e.g., from
by the reasonable results of Ref. [3] obtained for fission-barrier heights). More specifically, we have chosen these
strengths so as to reproduce the Fermi-surface diffuseness defined as tr(ρ̂1/2(1 − ρ̂)1/2), where ρ̂ is the one-body
reduced density matrix of the correlated wave function, obtained in HF+BCS calculations for both charge states.
Since this fit depends, of course, on the choice of a deformation for the solution, we have arbitrarily applied this
condition at one point in the deformation space which is of interest for the problem under scrutiny. In our case,
we have chosen to make this fit at the second fission barrier of 240Pu. The HTDA calculations have then been
performed within a space defined:

• by taking all single-particle states lying in a band of ±6 MeV around the proton and neutron Fermi energies
in |Φ0〉 (defined as half the differences between the last occupied and the first unoccupied single-particle
states)

• by taking all 1-pair transfer states available from the above defined single-particle valence space.

Finally, we have carried out a projection after variation of the obtained HTDA ground state and calculated the
corresponding energy as described above.

III. RESULTS AND DISCUSSION

The main purpose of this paper is to study the impact of parity restoration on the outer fission barrier of 240Pu
when starting from a Kπ = 0+ state. This state is relevant for the induced fission of the 1/2+ ground state of
239Pu by an s-wave neutron or the ground-state spontaneous-fission decay of the 240Pu nucleus.
To do so we have studied the relevant characteristics of the two-dimensional deformation energy surface for axial

quadrupole and octupole deformations from before the fission isomeric state up to after the outer saddle point.
The results are summarized in Fig. 1. Throughout this paper, the specific definition of the multipole moments

Q20, Q30 and Q40 is the one given e.g. in Ref. [21]. As very well known (see in particular Ref. [3] where HF+BCS
calculations have been performed for this nucleus making use of the same Skyrme interaction), allowing for a
breaking of the left-right reflection symmetry considerably lowers the fission barrier down to values consistent with
their experimental values. Consistently, we find in our HTDA calculations a value of 5.5 MeV for the second
fission-barrier height to be compared with the 5.1 MeV experimental value [22].
In that respect one should mention that the conclusion drawn from this seemingly very good success should

be somewhat watered down, a priori, because these calculations do not take into account some corrections which
would lower the fission barrier height (as the rotational energy correction, since we are merely calculating here a
fission barrier for intrinsic states) and some others which would raise it. In the latter case, we mention, beyond
the corrections related to the present work, those found in Refs. [23, 24] and systematically explained in Ref. [24]
which are stemming from the approximate treatment of the Coulomb exchange terms.
Let us first remark that upon projecting parity breaking intrinsic solutions on positive (negative resp.) parity

eigenstates, one always obtains projected energies equal to or lower (resp. higher) than the energies of the intrinsic
solutions. The relative ordering of the two projected energies for the same intrinsic parity breaking state may be
hinted, if not demonstrated, from the following consideration which is a quite general Quantum Mechanical result
(see, e.g., [25]). If one were to mix, in a GCM fashion for instance, positive and negative parity states in the
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FIG. 1. Deformation energy curves from before the fission isomeric state and up to after the second barrier region of the
240Pu nucleus. Three curves are plotted: for symmetrical HTDA solutions (solid curve), for asymmetrical HTDA solutions
unprojected (dotted curve), for projection on positive parity states (dashed curve).

vicinity of the intrinsic equilibrium solution at a given value of Q20, one would likely generate a zero-node solution
in the Q30 direction for the lowest positive-parity state and a one-node solution for the lowest negative-parity state.
One knows, e.g., from the discussion of Ref. [25], that the former would correspond to the ground-state(in such a
non-degenerate case). The fact thus, that positive-parity solutions (not mixed by the GCM ansatz) are lower in
energy than the corresponding negative-parity solutions may be deemed as consistent with the above. Note also,
en passant, that we have not made the effort to find out energies of negative-parity states in the vicinity of the
reflection-symmetrical case, through cumbersome appropriate treatments of this limiting case, since we are merely
interested here in the behavior of positive-parity solutions.
From the above discussion, one can expect four different behaviors of the positive-parity energy curveE+(Q30, Q

fixed
20 ).

(i) One has an equilibrium intrinsic solution which is symmetrical (Q30 = 0) with a large stiffness in the
axial octupole mode so that the projection is not able to create a positive-parity minimum for a finite value of
Q30. Clearly, such a projection reduces the stiffness with respect to the axial octupole mode, possibly creating a
dynamical instability.
(ii) If, in contrast to (i), the symmetrical equilibrium solution has a small enough stiffness, the parity projection

can create a pocket for a non-vanishing value of the octupole moment. A static instability away from symmetry,
which was not available with the intrinsic solutions, appears. This situation has been already encountered in
projected HF+BCS calculations for superdeformed solutions in the Mercury-Lead region [26]. It has also been
found in our calculations of the super deformed intrinsic state of Pb194 as shown in Fig. 2.

-1514
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Q      10     (fm   )30
 3-3
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M

eV
)

Q     = 46 b20

FIG. 2. Octupole deformation properties of 194Pb at the SD state (Q20 = 46 b). Three curves are plotted: for asymmetrical
unprojected HTDA solutions (solid curve), for projection on negative parity states (dotted curve), for projection on positive
parity states (dashed curve).

(iii) This case is concerned with situations where the intrinsic equilibrium solution is not symmetrical but
corresponds to a not too large absolute value of |Q30| (where the concept of large will be defined in the following
case (iv) below). The positive-parity projection emphasizes the instability already present at the intrinsic level,
yielding possibly corresponding equilibrium |Q30| values which may differ significantly from what has been obtained
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in the intrinsic case.
(iv) Beyond some critical value of |Q30|, the overlap and hamiltonian kernels between an intrinsic wave function

and its parity transform become negligible, so that in the calculations of the projected energies according to Eq. (19)
one obtains

E(p) ≈ Eintr , (27)

where Eintr stands for the energy of the intrinsic solution |Ψ〉, namely Eintr = 〈Ψ|Ĥ |Ψ〉.
This is examplified in Fig. 3 where the overlap of a solution obtained for 240Pu nucleus at Q20 = 85 barns (b)

with parity-transformed wave function is plotted as a function of Q30. The drop in the overlap to about 0.01 just
above Q30 ≃ 3.5 b3/2 is to be paralleled with the behavior of the energy curves shown in Fig. 5 where a clear
convergence of the three energies Eintr, E

(+) and E(−) is observed beyond this value of the axial octupole moment.

       Q     = 85 b20

Q      10     (fm  )30
 3-3

   
   

 ln
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 0

 0  2  4

FIG. 3. Logarithm of the overlap 〈Ψ|Ψ̃〉 as a function of the octupole deformation at the elongation defined by Q20 = 85 b.

The consequence of this feature is that when the non-symmetrical intrinsic equilibrium solution has a value of
|Q30| larger than the above critical value of almost vanishing overlaps, then the projection is ineffective in producing
any change in the equilibrium solution. One obtains a trivial twofold degeneracy corresponding to solutions which
are connected by parity transformation. This situation has also been encountered in projected Hartree–Fock–
Bogolyubov calculations with the Gogny energy-density functional for 222Ra [27]. It has also been found in our
calculations for this isotope as shown on Fig. 4.
As can be seen in Fig. 5, we are encountering the behaviors (i) to (iv) in this order in the study of the minimal

energy solutions obtained at a given Q20 value, when increasing it from after the first barrier up to beyond the
second barrier. The transitions between these various patterns take place at Q20 ≃ 65, ≃ 105 and ≃ 125 b.
Alternatively we have plotted in Fig. 6 the equilibrium (Q20, Q30) values for the intrinsic and the positive parity
solutions. Clearly the onset of a stable axial octupole deformation takes place in the fission process much earlier
for the projected solutions than for the intrinsic ones.
This entails two important consequences. First, this leads to the proposed existence of a stable octupole defor-

mation for the fission isomeric state corresponding to Q20 = 85 b, Q40 = 10.5 b2 and Q30 = 4.9 b3/2. Second,
this provides a systematic enhancement of the outer fission barrier with respect to the fission isomeric state. This
enhancement is only due to the relatively soft character of the octupole deformation energy curve near the fission
isomeric state since at the top of the second barrier the octupole deformation is too large to yield any projection
effect.
It is our contention that these two consequences are quite general in the actinide region. Therefore, we deem that

the outer (positive parity) fission-barrier heights with respect to the fission isomeric state are probably systemat-
ically underestimated in this region of nuclides, within unprojected calculations. In the present calculations, the
enhancement of the fission barrier height amounts to about 350 keV for the state of the compound 240Pu nucleus.

IV. CONCLUSIONS

In this paper, we have investigated the outer fission barrier of 240Pu within the microscopic HTDA approach and
evaluated the effect of the parity projection on this barrier. The projection on positive-parity states around the
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FIG. 4. Octupole deformation properties of 222Ra at the ground state corresponding to Q20 = 13 b. Three curves are
plotted: for asymmetrical unprojected HTDA solutions (solid curve), for projection on negative parity states (dotted curve),
for projection on positive parity states (dashed curve).

fission isomeric state has demonstrated the instability of this state with respect to the Q30 mode. This confirms the
results of Bonche et al. [28] or Egido and Robledo[27] obtained in another superdeformation region (superdeformed
states in the Hg-Pb region). As well known already from P. Möller and S. G. Nilsson, the fission valley when rising
towards the outer barrier becomes more and more asymmetrical with respect to the intrinsic parity. Consequently
much before reaching the outer saddle point, one goes beyond the critical values where, for a given Q20 value, the

matrix elements 〈Ψ|Ô|Ψ̃〉 vanish (where Ô stands for the Hamiltonian or the identity operator). In this case it is
clear that projected and unprojected energies are similar. As a consequence of the isomeric state instability, one
expects that the positive-parity fission-barrier height with respect to the fission isomeric state is larger than the
unprojected one. Therefore, one may conclude that our results provide a hint for a systematic underestimation of
the outer fission barrier height in usual unprojected calculations.
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