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Abstract

The thermal pairing gap obtained by embedding the exact solutions of the pairing problem

into the canonical ensemble is employed to calculate the width and strength function of the giant

dipole resonance (GDR) within the phonon damping model. The results of calculations describe

reasonably well the data for the GDR width as well as the GDR linearized strength function,

recently obtained for 201Tl in the temperature region between 0.8 and 1.2 MeV, which other

approaches that neglect the effect of non-vanishing thermal pairing fail to describe.
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I. INTRODUCTION

Since the discovery of the giant dipole resonance (GDR) as a collective thermal excitation

in highly excited (hot) nuclei [1], many experiments were carried out in the last three decades

to extract the GDR width and its shape (linearized strength function) as functions of nuclear

temperature T and angular momentum J . A recent compilation of GDR built on excited

states is given in Ref. [2]. At present, the well-established systematics accumulated by

measuring the γ decays of various hot compound nuclei formed in heavy-ion fusion reactions

and inelastic scattering of light particles on heavy targets has shown that the GDR width

increases with temperature T within the temperature region 1 MeV ≤ T ≤ 3 – 4 MeV. It has

also shown that the GDR width’s increase with angular momentum J becomes noticeable

only at J ≥ 27 – 30 ~ in heavy nuclei, whereas its location (peak energy) remains mostly

unchanged as T and J vary.

Experimental studies often refer to the thermal shape fluctuation model (TSFM) [4]

as one of theoretical descriptions of the width’s increase in this temperature region. The

TSFM takes the thermal average of the GDR photoabsorption cross section over the shape-

dependent cross sections caused by all fluctuating quadrupole shapes, which are assumed to

be coupled to the GDR vibration. The width’s increase as a function of T arises as a results

of such thermal average. The TSFM, however, fails to describe the temperature dependence

of the GDR width beyond the temperature region 1.5 < T ≤ 3 MeV. At T > 3 – 4 MeV

several experimental evidences have shown that the GDR width seems to saturate at high

T [3], whereas the TSFM predicts a continuously increasing width. In the low temperature

region, at T ≤ 1 MeV, a measurement of γ decays in coincidence with 17O particles scattered

inelastically from 120Sn [5] has obtained a GDR width in 120Sn of around 4 MeV at T =

1 MeV, that is smaller than its value of 4.9 MeV at T = 0. This result and the existing

systematics for the GDR width in 120Sn up to T ≃ 1.5 MeV are significantly lower than the

prediction by the TSFM.

Meanwhile, the GDR width as a function of temperature T is well described by the

phonon damping model (PDM) [6, 7] in the entire region 0≤ T ≤ 5 - 6 MeV, including the

increase in the width at T ≤ 3 MeV as well as the width saturation at high T . Within the

PDM, the damping of GDR at T 6= 0 is caused by coupling of the GDR to noncollective

particle-hole (ph) and particle-particle (pp) [hole-hole (hh)] configurations. The coupling
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to ph configurations exists even at T = 0, and leads to the quantal width ΓQ, whereas the

thermal width ΓT arises owing to coupling to pp and hh configurations, which appear only

at T 6= 0 because of the distortion of the Fermi surface at T 6= 0. In the low temperature

region T ≤ 1 MeV, it has been shown within the PDM that thermal pairing plays a crucial

role in reducing the GDR width in 120Sn [8]. As a matter of fact, in finite systems such

as nuclei, the pairing gap does not collapse at the critical temperature Tc ≃ 0.57∆(T = 0)

[∆(T = 0) being the pairing gap at T = 0] as in the case of the superfluid-normal phase

transition in infinite systems, but decreases monotonically as T increases. This decrease of

pairing tends to restore the Fermi surface, which is diffused in the presence of pairing, back

to the sharp step-function distribution. This competes with the thermal smoothing of the

Fermi surface, which increases with T . As a result of such competition, a compensation

takes place, which leaves the GDR width almost unchanged or even decreases slightly at

T ≤ 1 MeV. At T ≥ 2 MeV, pairing becomes significantly smaller than its value at T = 0,

so the thermal distortion of the Fermi surface becomes dominant and the width starts to

increase.

Very recently, α induced fusion reactions were used to measure the GDR width at low

temperature [9, 10]. These reactions can describe temperature more precisely whereas the

associated angular momentum in the mass region A = 115 – 121 is rather small (≤ 24~).

The data extracted from these latest experiments for the GDR width in 119Sb at 0.98 ≤ T ≤

1.23 MeV [9] are similar to those obtained previously for 120Sn, including the data point

at T = 1 MeV mentioned above, in good agreement with the prediction by the PDM for

the GDR width in 120Sn when thermal pairing is included. However, these experiments

also reported the data for the GDR width in 201Tl [10], which were extracted within the

temperature interval 0.8 ≤ T < 1.2 MeV. These values are significantly smaller than the

prediction by the TSFM for the GDR width in 208Pb even after including the shell effect.

The authors of Ref. [10] also made a comparison with the prediction by the PDM using the

results for the GDR width in 208Pb. However 208Pb is a doubly closed shell nucleus, that

is the neutron and proton pairing gaps are both zero, and, naturally, no pairing was taken

into account in the PDM prediction for the GDR width in this nucleus, whereas 201Tl is an

open-shell nucleus for both neutrons (N=120) and protons (Z=81). Therefore, an adequate

comparison should be made with the prediction within the PDM for the GDR width of the

same 201Tl nucleus, including the effects owing to thermal pairing of neutrons as well as
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protons. The aim of the present paper is to make such prediction.

As has been mentioned above, the conventional finite-temperature (FT) BCS theory,

which exhibits a collapse of the pairing gap at a critical temperature Tc, should be modified

to include thermal fluctuations when it is applied to finite nuclei. Among such modifications

are the modified BCS (MBCS) [11], the finite-temperature BCS1 (FTBCS1) as well as the

Lipkin-Nogami projected FTBCS1 (the so-called FTLN1) [12]. However, these approaches

fail for a close-to-magic nucleus such as 201Tl (Z=81). Therefore, in the present paper,

we employ the exact treatment of thermal pairing within the canonical ensemble (CE),

which has been elaborated in Ref. [13]. Within this approach, the thermal pairing gaps

are calculated from the exact pairing energy, which is obtained by averaging the exact

eigenvalues of the pairing problem in the CE at temperature T . This approach also allows

us to calculate the exact single-particle occupation numbers, chemical potentials, as well as

the exact quasiparticle energies. By using the latter, one can determine the quantities that

approximate the coefficients uk and vk of the Bogolyubov’s transformation from particles to

quasiparticles as well as the corresponding quasiparticle occupation numbers and use them

as ingredients to calculate the GDR width as a function of T in 201Tl within the quasiparticle

representation of the PDM. Because the recent data for the GDR width in 201Tl at low T

were obtained at low angular momentum (below 25~), the effect of angular momentum on

the GDR width is negligible. Therefore, for simplicity, angular momentum is not included

in the present calculations (See Ref. [14] for the recent extension of PDM to finite angular

momentum.).

The paper is organized as follows. The formalism is derived in Sec. II. The results of

numerical calculations are analyzed and compared with the experimental data in Sec. III.

The paper is summarized in the last section, where conclusions are drawn.

II. FORMALISM

A. GDR width within the PDM including thermal pairing

Because the PDM has been discussed in great details in a series of papers [6–8, 14–17],

we summarize below only the main results necessary for the numerical calculations in the

present paper.
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The PDM considers a model Hamiltonian, which consists of three terms. The first term

describes the independent single-particle (quasiparticle) field with single-particle (quasipar-

ticle) energies ǫk (Ek), the second term stands for the phonon field with phonon energies

ωq, whereas last term treats the coupling between these two fields [See Eq. (1) in Ref. [6]

for example.]. This coupling causes the damping of the phonon vibrations, for example, the

GDR phonon (q = GDR). As a result, the GDR acquires a width. The expression of the

GDR full width at half maximum (FHWM) Γ is obtained within the PDM as

Γ(T ) = 2γq(ω = EGDR) , (1)

where γq(ω = EGDR) is the phonon damping at the GDR peak energy EGDR. In the presence

of superfluid pairing, the phonon damping γq(ω) has the explicit form as [8]

γq(ω) = π

{

F2
1

∑

ph

[u
(+)
ph ]2(1−np−nh)δ(ω−Ep−Eh)+F2

2

∑

ss′

[v
(−)
ss′ ]

2(ns′−ns)δ(ω−Es+Es′)

}

.

(2)

In this expression, (ss′) stands for (pp′) and (hh′) with p and h denoting the particle (p)

levels, that is those situated above the Fermi level at T = 0 and ∆ = 0, and hole (h)

levels, that is those situated below it. F1 and F2 are the model parameters for ph and pp

(hh) couplings, respectively. Functions u
(+)
ph and v

(−)
ss′ are combinations of the Bogolyubov’s

coefficients uk, vk, namely u
(+)
ph = upvh + vpuh, and v

(−)
ss′ = usus′ − vsvs′ . The first sum at the

right-hand side of Eq. (2) with the factors (1− np− nh) represents quantal damping caused

by coupling of the GDR phonon to noncollective ph configurations, whereas the second sum

with the factors (ns′ − ns) stands for thermal damping, which arises from coupling of the

GDR phonon to pp and hh configurations. Because ω ≥ 0, the second sum over (ss′) is

finite (and positive) only at Es > Es′. The quasiparticle occupation number nk (k = p, h)

is given in the form of a Fermi-Dirac distribution

nk = [exp(Ek/T ) + 1]−1, (3)

smoothed with a Breit-Wigner-like kernel, whose width is equal to the quasiparticle damping

with the quasiparticle energy

Ek =
√

[ǫk − λ(T )]2 +∆(T )2 , (4)

where λ(T ) and ∆(T ) denote the temperature-dependent chemical potential and pairing

gap, respectively [See Eq. (2) of Ref. [8].]. For the GDR in medium and heavy nuclei, the
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quasiparticle damping is usually small, therefore the Breit-Wigner-like kernel can be safely

replaced with the δ-function. As a result, the quasiparticle occupation number nk has the

form of the Fermi-Dirac distribution (3). This also means that thermal damping of the

GDR appears only at T 6= 0 because all nk vanish at T = 0, whereas quantal damping exists

already at T = 0, when the factors (1−np−nh) = 1, as well as at T 6= 0. In closed-shell nuclei,

the pairing gap ∆(T ) is zero, so we have (1− np − nh) = fh − fp, (np′ − np) = fp′ − fp, and

nh′−nh = fh−fh′ , where fk are the single-particle occupation numbers. Correspondingly, the

sums and differences of quasiparticle energies become Ep+Eh = ǫp− ǫh, Ep−Ep′ = ǫp− ǫp′ ,

and Eh − Eh′ = ǫh′ − ǫh. As a result, Eq. (2) reduces to the expression for the phonon

damping for the case without pairing [6, 7], that is

γq(ω) = π
∑

kk′

[F
(q)
kk′ ]

2(fk − fk′)δ(ω − ǫk′ + ǫk) , (5)

with F
(q)
ph = F0

1 and F
(q)
pp′ = F

(q)
hh′ = F0

2 , where F0
1,2 denote the corresponding values of

parameters F1,2 in the zero-pairing case (∆ = 0). As has been demonstrated in Ref. [8] (See

the discussion below Fig. 3 therein), the factors [u
(+)
ph ]2(1− np − nh) cause a slight decrease

in the quantal width as T increases, whereas the factors [v
(−)
ss′ ]

2(ns′ − ns) are responsible for

the strong increase in the thermal width with T at low and moderate T , and its saturation

at high T . The combined effect makes the total width increase with T at low and moderate

T and saturate at high T . At very low T (T ≤ 1 MeV) pairing effect leaves the total width

almost unchanged with T or, in some cases, makes it even smaller than the value at T = 0,

as has been discussed in the Introduction.

The escape width Γ↑, which arises because of coupling to the continuum and is related to

the direct decay by particle emission, is usually small (few hundred keV), and does not seem

to the change with T in medium and heavy nuclei. In the numerical calculations within

the PDM, its effect is taken into account via the smoothing parameter ε, which replaces

the δ-functions in Eqs. (2) and (5) with δ(x) → ε/[π(x2 + ε2)], where x = ω − Ep − Eh

and ω − Es + Es′ in Eq. (2), and x = ω − ǫk′ + ǫk in Eq. (5). A value of ε = 0.5 MeV is

adopted in the present calculations. The results do not change significantly with ε varying

between 0.5 and 1 MeV. The PDM does not take into account the evaporation width Γev

of the compound nuclear states, which comes from the quantum mechanical uncertainty

principle [18] because its effect on the GDR width is expected to be significant only at high

T (≫ 3.3 MeV) and J (≫ 30~).
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The GDR strength function S(ω) is calculated as

S(ω) =
1

π

γq(ω)

[ω − EGDR]2 + γ2
q (ω)

. (6)

The GDR energy EGDR is found as the solution of the equation [See Eqs. (3) and (4) of

Ref. [8].]:

ω − ωq −

{

F2
1

∑

ph

[u
(+)
ph ]2(1− np − nh)

ω − Ep −Eh
+ F2

2

∑

ss′

[v
(−)
ss′ ]

2(ns′ − ns)

ω −Es + Es′

}

= 0 , (7)

where the expression within the figure brackets is the real part of the polarization operator

Pq(E) at E = ω± iε, which causes the energy shift of the phonon energy ωq under the effect

of quasiparticle-phonon coupling, whereas the imaginary part of Pq(ω ± iε) is the phonon

damping in Eq. (2).

B. Exact treatment of thermal pairing within the canonical ensemble

As for the pairing problem, the present work considers the exact treatment of thermal

pairing within the canonical ensemble (CE) with the pairing Hamiltonian given as

HP =
∑

k

ǫk(a
†
+ka+k + a†−ka−k)−G

∑

kk′

a†ka
†
−ka−k′ak′ , (8)

where a†±k(a±k) are the creation (annihilation) operators of a particle (neutron or proton)

having the single-particle energy ǫk, angular momentum jk with projections mk > 0, denoted

with +k, and with projection −mk < 0, denoted with −k. The exact eigenvalues Es of the

eigenstates s with degeneracies ds, obtained by diagonalizing this Hamiltonian, are used to

construct the partition function within the CE at temperature T [13]:

Z(β) =
∑

s

dse
−βEs , β = 1/T . (9)

By using this CE partition function, the total exact CE energy E , entropy S, and occupation

number fCE
k on the kth level are obtained in terms of the ensemble averages of the exact

eigenvalues Es and state-dependent occupation numbers f
(s)
k , respectively, as

E = −
∂ lnZ(β)

∂β
, S = βE + lnZ(β) , fCE

k =
1

Z(β)

∑

s

f
(s)
k dse

−βEs . (10)
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Knowing the total energy E(n) and entropy S(n) of a system with n particles (n = N

neutrons or Z protons), we can calculate its Helmholtz free energy F (n) = E(n) − TS(n)

and the exact CE chemical potential λCE(T ) as [19]

λCE(T ) =
1

4
[F (n+ 2)− F (n− 2)] . (11)

This approach does not produce a pairing gap, which is a mean field concept. Instead, an

exact CE pairing gap is introduced to mimic the mean-field pairing gap as [See Eq. (18) of

Ref. [13] and the discussion therein.], namely:

∆CE(T ) =
√

−GEpair , Epair = E − E (0) , E (0) ≡ 2
∑

k

(ǫk −
G

2
fCE
k )fCE

k . (12)

It is worth mentioning that, although the CE approach to thermal pairing was employed by

several authors [20–23], the gap (12) is very similar to that defined in Eq. (52) of Ref. [20],

but it is different from the canonical gap defined in Refs. [21, 22] because the term 〈E〉
(0)
C is

taken at G = 0 in the latter, whereas no thermal pairing gap was calculated in Ref. [23].

Given the chemical potential λCE(T ) in Eq. (11) and the pairing gap ∆(T ) in Eq. (12),

the quasiparticle energies Ek can be calculated by using Eq. (4). In the same way the exact

CE pairing gap is introduced to mimic the mean-field pairing gap, the quantities that mimic

the Bogolyubov’s coefficients uk and vk can be obtained separately for neutrons and protons

by using the standard expressions

uk =

√

1

2

[

1 +
ǫk − λ(T )

Ek

]

, vk =

√

1

2

[

1−
ǫk − λ(T )

Ek

]

, (13)

which, strictly speaking, are valid only within the BCS-based theories. A justification for

such approximation is that, in the cases where both the exact CE gaps and the FTBCS1

as well as the FTLN1 are possible (including the corrections owing to coupling to the self-

consistent quasiparticle random-phase approximation), these pairing gaps are rather close

to each other, especially at T ≤ 2 MeV (See Fig. 1 of Ref. [13].).

III. ANALYSIS OF NUMERICAL RESULTS

The 323 neutron and proton doubly folded single-particle energy levels for 201Tl employed

in the present calculations are obtained within the axially deformed Woods-Saxon potentials

including the spin-orbit and Coulomb interactions [24]. The neutron spectrum spans a
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space of 157 doubly folded levels (degenerated into 41 spherical orbitals), starting from the

bottom at -38.36 MeV up to 12.57 MeV. The proton spectrum has 166 doubly folded levels

(degenerated into 44 spherical orbitals), starting from the bottom at around -34 MeV, up to

around 22.3 MeV. They cover the energy intervals similar to those used in the calculations

of GDR width in 208Pb [6, 7].

In the construction of the CE partition function (9) one needs to include all the eigen-

values of the ground state as well as excited states. Meanwhile, the FORTRAN IMSL sub-

routine for matrix diagonalization at the RIKEN Integrated Cluster of Clusters computing

system implies that the numbers of levels Ω and particles n should satisfy the condition

Ω!/[(n/2)!(Ω − n/2)!] < 104, which means it is impossible to carry out the exact diagonal-

ization of the pairing Hamiltonian (8) with the entire single-particle spectra [13]. Therefore,

knowing that pairing has a significant effect around the Fermi surface, we calculate the ex-

act CE thermal gap (12) only for 14 doubly folded neutron (proton) levels situated around

the Fermi one, λ(T = 0), with 7 levels below and 7 levels above it. The selected levels

belong to the group of 18 neutron (proton) levels within five (2j + 1)-folded spherical or-

bitals 1i13/2, 3p3/2, 2f5/2, 3p1/2, 2g9/2 for the neutrons, and 1h11/2, 2d3/2, 3s1/2, 1h9/2, 2f7/2 for

protons, as listed in Table I. The pairing parameters GN = 0.182 MeV for neutrons and GZ

= 0.37 MeV for protons are chosen to reproduce the empirical values of the neutron and

proton gaps ∆N,Z , which are both equal to 1 MeV for 201Tl according to Fig. 2-5 of Ref.

[25]. This value agrees well with the three-point and five-point gaps calculated in Ref. [26]

and shown in Fig. 1 therein. The remaining 4 neutron levels (two on 1i13/2 and two on

2g9/2 orbitals) and 4 proton levels (two on 1h11/2 and two on 2f7/2 orbitals) of this group are

assumed to have the same thermal neutron and proton pairing gaps, respectively. For the

levels beyond this group, pairing is assumed to be negligible so that 1 − nh = fh, np = fp,

up(h) = 1 (0), and vp(h) = 0 (1).

The PDM assumes that the matrix elements of GDR coupling to ph configurations,

causing the quantal width, are all equal to F1, whereas those of coupling to pp (hh) config-

urations, causing the thermal width at T 6= 0, are all equal to F2 [See Sec. II B of Ref. [8]

for the detail discussion on the justification of this assumption.]. The third parameter, ωq,

in the case of GDR (q = 1), is chosen to be close to EGDR(T = 0). Because the mechanism

of the spreading width Γ↓ at T = 0 is known, which is owing to coupling to more complicate

configurations 2p2h configurations, the PDM has no ambition to calculate it microscopically
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TABLE I. Single-particle spherical orbitals obtained within Woods-Saxon potentials and used in

the calculations of neutron and proton exact CE pairing gaps for 201Tl.

N Z

k nlj ǫk (MeV) nlj ǫk (MeV)

1 2g9/2 -2.226 2f7/2 -3.766

2 3p1/2 -5.620 1h9/2 -3.957

3 2f5/2 -6.189 3s1/2 -8.038

4 3p3/2 -6.586 2d3/2 -8.342

5 1i13/2 -6.903 1h11/2 -10.031

but is interested only in its temperature dependence incorporated in the quantal width.

Therefore the parameter F1 is selected to reproduce the GDR experimental width at T =

0, which is essentially the sum of the spreading width, Γ↓, and the escape width, Γ↑. The

parameter F2 is usually adjusted so that the GDR energy EGDR(T ), found as the solution

of Eq. (7), does not change appreciably with T . Because the GDR energy in 201Tl does

not depend on T , namely EGDR(T ) = 13.8 MeV [10], for simplicity, we adopt in the present

paper EGDR = 13.8 MeV, and select F2 so that the calculated width at T ≃ 2 MeV matches

the corresponding experimental value for the GDR width in 208Pb [27].

Shown in Fig. 1 are the exact CE neutron and proton pairing gaps for 201Tl as functions

of T . In different with the BCS gaps, the exact CE gaps do not collapse at Tc ≃ 0.57 MeV

for ∆(0) = 1 MeV. Instead, they both decrease as T increases. In particular, the proton

gap remains almost unchanged or even slightly increases in the region 0 ≤ T ≤ 1 MeV, and

it is significantly larger than the neutron gap at the same value of T already starting from

T ≃ 0.5 MeV. At T = 1 MeV the proton gap is still equal to around 1 MeV whereas the

neutron gap drops to 0.34 MeV. At T = 5 MeV the proton gap remains as large as around

0.4 MeV, whereas the neutron gap is depleted to 0.13 MeV.

The GDR FWHM Γ(T ) in 201Tl obtained within the PDM in three different approx-

imations are plotted as functions of T against the experimental data in Fig. 2. In the

first approximation, the zero-pairing one, the width Γ(T ) is calculated by using Eq. (1)

and the phonon damping given in Eq. (5). The single-particle occupation numbers fk are

10
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FIG. 1. (Color online) Exact CE gaps for neutrons [(red) solid line] and protons [(blue) dashed

line] for 201Tl.

approximated with the Fermi-Dirac distribution

fk = 1/{exp[β(ǫk − λ)] + 1} , (14)

where the chemical neutron and proton potentials change with T to conserve the particle

numbers, according to the equation n = 2
∑

k fk with n = N,Z. The calculations adopted

the following values of the parameters for the ph and pp (hh) couplings: F1 = 4.0×10−2

MeV and F2 ≃ 13.27×10−2 MeV. The GDR width predicted by this approximation (thin

solid line) clearly overestimates three lowest experimental data points at T = 0.82, 0.84 and

0.97 MeV. The overall temperature dependence of this width is similar to that obtained

previously for the doubly closed-shell 208Pb (dotted line) except at T > 3 MeV, where it

becomes larger than the GDR width in 208Pb, to saturate at T > 4 MeV at a value of 12.7

MeV compared to that of around 10.5 MeV for 208Pb. The small bump at T < 0.3 MeV

occurs because of the neutron single-particle energies of the orbitals i13/2 and p3/2, which are

equal to 6.903 MeV and 6.587 MeV, respectively, and located just below the Fermi level at
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FIG. 2. (Color online) GDR width as a function of T versus experimental data. The (red) thick

solid line is the GDR width for 201Tl obtained with the effect of exact CE pairing. The (green)

thin solid line denotes the same width but obtained without pairing. The (purple) dashed line

stands for the same quantity, but obtained by using the exact single-particle occupation numbers

fk and effective ǫk − λ(T ) discussed in the text. The dotted line represents the GDR width for

208Pb obtained previously in Refs. [6, 7]. The full circles and open boxes are experimental GDR

widths for 201Tl [10] and 208Pb [27], respectively.

T = 0. They cause a local minimum in the temperature dependence of the neutron chemical

potential at T = 0.3 MeV as shown by the solid line in Fig. 3 (a). A test by changing the

energies of these levels to 7.903 and 7.587 MeV, respectively, removes this local minimum

and, consequently, flattens the GDR width at T < 1 MeV, as shown by the dash-dotted

lines in Figs. 3 (a) and 3 (b), respectively.

In the second approximation, we consider an effective way of taking thermal pairing into

account, namely, in Eq. (5), the single-particle occupation numbers fk for the 18 selected

levels around the Fermi surface, which were discussed previously, are replaced with their

exact CE values fCE
k calculated by using Eq. (10). The effective values of (ǫk − λ) for

these 18 levels are found by inverting the Fermi-Dirac distribution (14) to obtain (ǫk −λ) =

T [ln(1− fCE
k )− ln fCE

k ]. The calculations used F1 ≃ 2.45×10−2 MeV and F2 ≃ 14.83×10−2

MeV. Starting at the same value equal to around 4 MeV at T = 0, the width predicted by
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FIG. 3. (Color online) Effect of the single-particle orbitals at low T . In (a) the (green) solid line

denotes the neutron chemical potentials as a function of T obtained for 201Tl before modifying

the energies of the orbitals i13/2 and p3/2, whereas the (blue) dash-dotted line stands for the same

quantity obtained after modifying the energies of these orbitals as specified in the text. In (b)

the (green) solid and (blue) dash-dotted lines show the GDR widths for 201Tl obtained within the

no-pairing approximation before and after this modification, respectively.

this approximation (dashed line) decreases as T increases up to T = 0.7 MeV to perfectly

match the three lowest data points at T = 0.82, 0.84 and 0.97 MeV. At T > 0.7 MeV this

width increases with T but remains smaller than that obtained without pairing up to T ≃

3.6 MeV when they cross and reach the same value at T = 5 MeV.
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Finally, thermal pairing is fully taken into account within the quasiparticle representation

of the PDM by using Eqs. (1) and (2), which include the exact CE thermal pairing gap

for 18 levels around the Fermi surface for neutrons and protons, separately, as has been

discussed in Sec. II B. The GDR width predicted by this approach (thick solid line) nicely

describes all the data points for 201Tl. Its values at T = 0.8, 0.9, 1.0, 1.1 and 1.2 MeV are

found equal to 3.58, 3.75, 3.96, 4.22 and 4.5 MeV, respectively, to be compared with the

corresponding experimental values of 3.4± 0.45, 3.7± 0.45, 3.8± 0.45, 4.6± 0.45 and 4.5±

0.45 MeV at T = 0.82, 0.94, 0.97, 1.09 and 1.12 MeV, respectively. It also matches fairly

well the experimental width for 208Pb at 1.3< T ≤ 2 MeV, although, up to T ≃ 3 MeV,

it remains smaller than the width predicted by the PDM for 208Pb (dotted line). However,

to obtain such description, the value for F1 has to be smaller than that used in the case

without pairing so that Γ(0) ≃ 3 MeV instead of 4 MeV for the GDR width in 208Pb at

T = 0, and, consequently, the value for F2 has to be larger to reproduce the same data point

at T = 2 MeV. Eventually, this brings Γ(0) closer to the recent parametrization of the GDR

width for quasipherical nuclei [28], which implies that the GDR FWHM for 201Tl at T = 0

amounts to around 3.33 MeV, rather than 4 MeV as that of 208Pb. The slope of the width’s

increase as a function of T also becomes slightly steeper, improving the agreement between

theory and experiment within the entire region of T . A value for F1 that reproduces Γ(0) =

4 MeV leads to an overestimation of the width in the entire temperature region of T 6=

0. The values for the coupling parameters used in this approximation are F1 ≃ 2.81×10−2

MeV and F2 ≃ 16.73×10−2 MeV. It is important to point out that, although one could fit

the data points for 201Tl within the zero-pairing approximation by reducing the value of

parameter F1 from 4.0×10−2 MeV to 3.54×10−2 MeV, it is not possible by readjusting only

parameters F1,2 to achieve the overall agreement with both sets of data for the GDR widths

in 201Tl and 208Pb as does the last approach that fully includes exact CE pairing gaps within

the quasiparticle representation of the PDM. At T > 2.5 MeV the GDR width obtained by

using such reduced parameter F1 in the zero-pairing approximation becomes even smaller

than that predicted by the second approximation (of taking effectively thermal pairing into

account). This indicates that the effect owing to thermal pairing on the GDR width has its

microscopic origin, which cannot be accounted for by simply adjusting model’s parameters.

The GDR strength functions obtained at T = 0.8 – 1.2 MeV by using Eq. (6) within

the quasiparticle representation of the PDM that includes exact CE pairing are displayed
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FIG. 4. (Color online) GDR strength functions for 201Tl obtained within the quasiparticle repre-

sentation of the PDM (red solid lines) at T = 0.8 – 1.2 MeV as shown in the panels in comparison

with the experimental linearized strength functions (green data points) [10] at T = 0.82, 0.94, 0.97,

1.09, and 1.12 MeV from the bottom panel, (e), to the top one, (a), respectively.
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in Fig. 4 in comparison with the corresponding experimental data adapted from Fig. 1(a)

of Ref. [10]. The theoretical strength functions have been renormalized so that the value

at ω = 5 MeV and the maximum at T = 1.2 MeV match the corresponding experimental

values. This figure and Fig. 2 show that the PDM describes reasonably well not only the

temperature dependence of the GDR width but also that of the GDR linearized shape.

IV. CONCLUSIONS

In the present paper, we calculated the width and strength function of the GDR in 201Tl

at finite temperature within the framework of the quasiparticle representation of the PDM.

Thermal pairing is taken into account by using the exact treatment of pairing within the

canonical ensemble. This treatment allows us to calculate the exact equivalences to the

pairing gaps for protons and neutrons in a nucleus neighboring a proton closed-shell one.

Because of thermal fluctuations owing to the finiteness of the system, which are inherent

in the CE, the exact CE thermal pairing gaps do not collapse at the critical temperature

Tc of the superfluid-normal phase transition as in the case of infinite systems, but decrease

monotonically as T increases, and remain finite up to T as high as 5 MeV. The theoretical

predictions within the PDM are compared with the data, which were recently obtained

for the GDR width and strength functions in 201Tl at 0.8< T < 1.2 MeV at low angular

momentum below 25~.

The good agreement between the PDM predictions including thermal pairing and the

experimental data is a clear demonstration of the manifestation of the effect owing to thermal

pairing, which plays a vital role in reducing the GDR width at low T in open-shell nuclei.

Under the influence of thermal pairing, the GDR width in 201Tl becomes as low as around 3.7

MeV at T = 0.8 MeV, and the width Γ(0) of the GDR built on the ground state (T = 0) can

be as small as 3 MeV, that is smaller than the GDR width in 208Pb (4 MeV) at T = 0. The

results obtained in the present work as well as the previous predictions for the GDR width

in 120Sn, where the important role of neutron thermal pairing has been shown to reduce the

GDR width at T ≤ 1 MeV [8], confirm that, in order to have an adequate description of

GDR damping at low T , a microscopic model needs to take into account thermal pairing at

least up to T ∼ 1.5 MeV.
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