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Abstract: In the context of climate change, the impact of hydro-meteorological extremes, such as
floods and droughts, has become one of the most severe issues for the governors of mega-cities.
The main purpose of this study is to assess the spatiotemporal changes in extreme precipitation
indices over Ho Chi Minh City, Vietnam, between the near (2021–2050) and intermediate (2051–2080)
future periods with respect to the baseline period (1980–2009). The historical extreme indices were
calculated through observed daily rainfall data at 11 selected meteorological stations across the study
area. The future extreme indices were projected based on a stochastic weather generator, the Long
Ashton Research Station Weather Generator (LARS-WG), which incorporates climate projections from
the Coupled Model Intercomparison Project 5 (CMIP5) ensemble. Eight extreme precipitation indices,
such as the consecutive dry days (CDDs), consecutive wet days (CWDs), number of very heavy
precipitation days (R20mm), number of extremely heavy precipitation days (R25mm), maximum
1 d precipitation amount (RX1day), maximum 5 d precipitation amount (RX5day), very wet days
(R95p), and simple daily intensity index (SDII) were selected to evaluate the multi-model ensemble
mean changes of extreme indices in terms of intensity, duration, and frequency. The statistical
significance, stability, and averaged magnitude of trends in these changes, thereby, were computed
by the Mann-Kendall statistical techniques and Sen’s estimator, and applied to each extreme index.
The results indicated a general increasing trend in most extreme indices for the future periods. In
comparison with the near future period (2021–2050), the extreme intensity and frequency indices in
the intermediate future period (2051–2080) present more statistically significant trends and higher
growing rates. Furthermore, an increase in most extreme indices mainly occurs in some parts of the
central and southern regions, while a decrease in those indices is often projected in the north of the
study area.

Keywords: extreme precipitation; LARS-WG; CMIP5; spatiotemporal changes; climate change

1. Introduction

According to the Global Risks Report 2019 published by the World Economic Fo-
rum (WEF), extreme weather events (e.g., heavy rainfall or heat waves) and the failure of
climate-change mitigation and adaptation have remained as the top three risks in terms
of likelihood and impact on the environment and human being [1]. In addition, the Inter-
governmental Panel on Climate Change (IPCC) states in their Fifth Assessment Report
(AR5) that the global average surface temperature is expected to rise, and precipitation
is likely to occur more intensely and frequently in the 21st century [2,3]. In other words,
as a result of greenhouse gas emissions (GHGs), the evidence has shown that a growing
shift of temperature and humidity at global near-surface and troposphere layer could be
potential for precipitation changes in the frequency, intensity, and duration of extreme
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events around the world [4–6]. It should be noticed that extreme climate events have
always posed ever-intensifying threats to most aspects of natural resources and daily life,
such as natural ecosystems and biodiversity [7–9]; human life, community health and social
care systems [10,11]; energy supply and demand, transportation, and urbanization [12–14];
economics and agricultural productions [15–17], etc. Therefore, the study on extreme cli-
mate events has been of great concern to the scientific community and governments around
the globe for planning and implementing efficient mitigation and adaptation strategies.

To identify and examine the extreme events and their variation in the context of
climate change, quantitative approaches for evaluating the extreme climatic indices have
been developed and widely used by various researchers [18–20]. For consolidating the
definition of climate extreme indices on a global scale, as well as facilitating research to
compare differences in climate extremes across different study areas, a set of 27 extreme
climatic indices computed from daily temperature and precipitation data series has been
proposed and highly recommended by the Expert Team on Climate Change Detection
and Indices [21]. Afterward, there is a large volume of publications using these proposed
indices to address the concerned issues on the analysis of climate extremes in the context
of climate change [22,23]. Particularly, in the study of Tian et al. [24], trend analysis
of temporal and spatial variability of extreme precipitation indices has attracted more
attention. Therefore, this study is focused on assessment of the spatiotemporal variation of
extreme precipitation over Ho Chi Minh City caused by climate change. The future climate
change scenarios are usually produced using two downscaling techniques based on the
outputs of general circulation models (GCMs), namely, statistical downscaling technique
and dynamical downscaling technique. In comparison to the dynamical downscaling
technique, the statistical downscaling technique is simple to apply to different regions at
the station scale and requires fewer computing resources (Wilby and Dawson, 2007). In
this study, the well-known stochastic weather generator, LARS-WG, which incorporates
climate projections from the Coupled Model Intercomparison Project 5 [25] ensemble, was
used. Instead of analyzing by individual model, a methodology of multi-model ensemble
mean is applied to compute future precipitation data for the assessment of the impact of
climate change.

Ho Chi Minh City (HCMC) is the largest economic and financial center of Vietnam.
Although the City occupies just 0.6% of the country’s area and contains a total population of
around 8.8 million inhabitants in 2018 (approximately 8.34% of the population of Vietnam),
it occupies about 23% GDP of Vietnam (2019). Besides its rapid economic growth, HCMC
has been encountering many challenges, varying from natural extreme weather to anthro-
pogenic impacts. Additionally, HCMC has been ranked in the top 20 coastal cities that is
considered to be vulnerable and severely affected by climate change, and the estimated
cost for mitigation and adaptation of climate change impacts is expected to be the highest
in the East Asia region [26,27]. Furthermore, according to the projected scenarios of Asian
Development Bank (ADB), over 61% of the city area will be covered by regular flooding,
and HCMC will be entirely submerged under water due to sea level rise by 2050 [28].
Therefore, given the high extra cost linked to climate change, it is profoundly essential to
consider the potential climate-related risks as an integral part of urban management and
planning [29]; particularly, a localized case study is highly recommended for the analysis
of changes in extreme precipitation events [30–32].

Eventually, the aim of this study is (1) to compute and evaluate the spatial and
temporal trends in extreme precipitation indices over HCMC in the future period (2021–
2080); (2) to assess the spatiotemporal changes of trends in those extreme indices with the
effect of climate change. An expectation of this study is to obtain informative assessment
of the spatial and temporal variability of extreme precipitation events in HCMC during the
current and future periods, in order to contribute scientific references to the governors for
planning strategies to integrate climate change mitigation and adaptation frameworks for
the city development.
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2. Study Area and Data Preparation
2.1. Study Area

Located in the south of Vietnam, HCMC (Figure 1) has been recognized as an extraor-
dinarily economic and financial center in Vietnam, and also a vibrant metropolis with
the rapid industrialization, urbanization, and agricultural intensification. The climate in
HCMC is identified as the tropical monsoon regime with specificity of two distinguished
seasons, rainy and dry. In the dry season from November to April, the city obtains a low
rainfall (approximately of 10–15% of the total annual rainfall), high evaporation, and high
temperature (around 29–30 ◦C). On the other hand, the average rainfall during the rainy
season from May to October generally accounts for approximately 85–90% of the total
annual rainfall, which has approximately varied from 1000 to 1600 mm in recent years as
shown in Figure 2.
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With an area of 2095 km2, HCMC is located on the delta formed by the Saigon and
Dong Nai Rivers. Its topography is mostly plain, including small hills; approximately 50%
of its elevation is lower than 1.5 m above mean sea level [33]; around 16% of its total area



Water 2021, 13, 120 4 of 27

is covered by a dense network of rivers and canals about 8000 km in length. In addition,
the water levels in these widespread waterways are primarily affected by a combination of
semi-diurnal tides, extreme monsoon rainfalls and storms across the city. Consequently,
the low-lying terrain accompanying the open and unrestrained water systems in HCMC
poses serious threats of flooding vulnerability to the city, especially in the context of climate
change [34].

2.2. Data Preparation

The historical daily precipitation data during the period of 1980–2017 provided by the
Hydro-Meteorological Data Center of Vietnam were collected at 11 meteorological stations
in HCMC and adjacent regions, as shown in Figure 1.

In this study, the basic quality controls and homogeneity assessment were applied to
both the observed and projected datasets in order to secure the completeness, reliability,
and consistency of the data before computing selected extreme precipitation indices and
performing trend analysis. To assess the quality and homogeneity of meteorological data,
as well as to compute the climatic extreme indices, the RClimdex statistical toolkit [35] and
RHtests toolkit (Wang and Feng 2013) are used. The RClimadex and RHtests are the libraries
for computing 27 core extreme climate indices [21] and testing the data homogenization.
These toolkits [36] are accepted and recommended by the World Meteorology Organization.

3. Methodology
3.1. Extreme Precipitation Indices

To assess the spatial and temporal variability of trends in extreme rainfall events across
HCMC, the well-known extreme precipitation indices suggested by the Expert Team on
Climate Change Detection and Indices (ETCCDI) were used in this study. Since the HCMC
is located in tropical climate region, a set of 8 appropriate extreme precipitation indices
(Rx1day, Rx5day, CDD, CWD, R20mm, R25mm, R95p, and SDII), as shown in Table 1, is
chosen in order to evaluate the elemental characteristics of extreme precipitation events,
such as intensity, duration, and frequency. Particularly, R20mm and R25mm indicate the
frequency of extreme rainfall; CDD and CWD describe the duration of extreme rainfall;
RX1day, RX5day, R95p, and SDII present the intensity of extreme rainfall. These extreme
indices were selected based on the previous studies [37].

Table 1. List of precipitation extreme indices used in this study.

Types Indices Name Definitions Unit

Intensity indices

RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm

RX5day Max 5-day precipitation amount Monthly maximum 5-day precipitation mm

R95p Very wet days Annual total precipitation when
precipitation > 95th percentile mm

SDII Simple daily intensity index Annual total precipitation divided by the
number of wet days mm/day

Frequency indices

R20mm Number of heavy precipitation
days

Annual count of days when precipitation
> 20 mm days

R25mm Number of very heavy
precipitation days

Annual count of days when precipitation
> 25 mm days

Duration indices
CDD Consecutive dry days Maximum number of consecutive days

with precipitation < 1 mm days

CWD Consecutive wet days Maximum number of consecutive days
with precipitation > 1 mm days
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These selected indices were computed by RClimdex tool for each station of the
11 weather stations in HCMC based on the corresponding datasets of historical obser-
vation and the future projections. Thereby, the trend analysis approach was used to
provide valuable information about the spatial and temporal change of trends in extreme
precipitation events due to the impact of climate change in the study region.

3.2. Trend Analysis
3.2.1. Mann-Kendall Test

For analyzing the underlying tendency in climate and hydrological data series, the
Mann-Kendall (M-K) nonparametric test [38,39] and Sen’s estimator [40] are highly recom-
mended by the World Meteorological Organization (WMO) and widely applied in most
studies on the trend analysis of hydro-meteorological data [31,41]. Additionally, the non-
parametric M-K test was selected for the present study instead of parametric tests, because
this method is suitable for the hydro-meteorological data with a non-normal distribution,
and it has low sensitivity to abrupt breaks due to the inhomogeneity of data [41]. The M-K
hypothesis test is based on the assumptions that the data need to be independent and iden-
tically distributed, i.e., there is no serial autocorrelation remains in the datasets [42]. The
statistic parameter (Z-score) computed from the M-K test was used to detect the movement
of trends (increasing or decreasing tendency); the corresponding p-value indicates the level
of statistical significance, whereas Sen’s slope was calculated to represent the magnitude of
trends.

Prior to applying the M-K test and Sen’s estimator, the study datasets were examined
for the existence of serial autocorrelation to reduce the adverse impact on the detection of
deterministic trends. In this study, the trend-free pre-whitening approach (TF-PW) was
conducted in order to remove the serial autocorrelation effects; the detailed definition and
procedure of this method can be found in [43,44].

3.2.2. Trend Strength and Stability

An advantage of using the M-K test for trend analysis is the test results being rarely
affected by outliers; it is not restricted to a specific sample distribution. However, the
determined sign and magnitude of a trend are strongly depended on a selected time
period, i.e., the trend’s test results will be changed as the time span of the dataset is varied.
Hence, it is challenging to evaluate the tendency of a time series due to the instability
of the test results [30,31]. Therefore, the traditional M-K test should be modified for
assessing a long-term persistence of the statistical significance and stability of the trend.
The choice of studying trends in 25-year moving periods was intended as a cross-validation
technique for time series data. The rainfall data of a station were recognized to have
a predominantly upward (or downward) trend if the number of 25-year moving time
series with significantly upward (or downward) trends was higher than the number of
significantly downward (or upward) trends. In this study, the M-K test and Sen’s estimator
were sequentially applied at each station for each interval of 25-year moving time series of
extreme precipitation indices within the historical (1980–2017), the baseline (1980–2009),
near future (2021–2050) and intermediate future (2051–2080) periods. In detail, there are
14 series of 25-year intervals regarding the historical observed data from the period of
(1980–2004) to (1993–2017), 6 series of 25-year intervals regarding simulated baseline data
from the period of (1980–2004) to (1985–2009), and 12 series of 25-year intervals regarding
simulated future data from the period of (2021–2045) to (2026–2050) and from the period of
(2051–2075) to (2056–2080), respectively.

The statistical significance of a trend was classified by the p-value, which is computed
by the M-K test following statistical classification as a strongly significant trend if p < 0.1,
a weakly significant trend if 0.1 ≤ p ≤ 0.2, and an insignificant trend if p > 0.2 [31]. In
addition, a particular trend, e.g., significant increasing/decreasing or insignificant trend,
with the greatest number of 25-year moving periods, was recognized as the dominant
trend at a specific station for spatial analysis. Thereby, the stability (S) of a significant
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increasing/decreasing trend in each extreme precipitation indices at a station was expressed
as the percentage of the 25-year moving time series, in which their trends were significantly
increasing/decreasing during a particular period. The determined stability of trends was
categorized as an unstable trend if 0% ≤ S ≤ 15%; a poor trend if 15% ≤ S ≤ 25%; a
stable trend if 25% ≤ S ≤ 50%; strongly stable if 50% ≤ S ≤ 75%; very strongly stable if
S ≥ 75%. In this study, the arithmetic average of the slope values, which were computed
by Sen’s estimator for each interval of 25-year moving periods, was taken to express an
average magnitude of a trend in each extreme precipitation indices at each station during
the particular periods. The detailed description of this approach could be found in [30,31].

3.3. LARS-WG Downscaling Tool

There are various statistical downscaling techniques, such as the Statistics Downscal-
ing Model (SDSM), Automated Statistical Downscaling (ASD), delta change methods, etc.;
among them, LARS-WG developed by Semenov and Stratonovitch [45] was selected for
this study because it can provide a better performance on reproducing monthly meteoro-
logical variables than other statistical downscaling techniques [46]. Basically, LARS-WG
uses observed meteorological data (daily rainfall, temperature) from a specified site to
estimate a set of parameters for fitting probability distributions, which is then used to
generate synthetic weather time series of a tributary length by randomly selecting values
from appropriate distributions [47]. Based on the coordinates of the meteorological station,
the LARS-WG tool automatically determines the match between the station and GCM grid
cell to generate a site-specific scenario of climate change using the GCM outputs, even
though the size of the GCM grid cells is larger than that of the study area. To produce the
climate change scenarios, the distribution parameters for a specific site were perturbed with
the monthly delta factors of each future period derived from the GCM output. The delta
factors are estimated as relative changes in precipitation. The LARS-WG has been widely
applied as a downscaling tool to generate future climate data from general circulation
models (GCMs) for climate change assessments in numerous studies, and it has confirmed
a good efficiency in simulating the extreme precipitation [48–50]. More discussion on the
applications of the LARS-WG tool for climatic extreme event analysis could be found in
various studies, such as [45,51,52].

By using the historical observed rainfall data, LARS-WG was sequentially applied to
estimate a set of parameters for the semi-empirical probability distributions of precipitation
data at each station in the study area. These probability distributions were used for fitting
the sequences of wet and dry days and precipitation amount. Thereby, the site-calibrated
parameters were used to simulate daily precipitation at each rain gauge for the baseline
period. To evaluate the performance of LARS-WG in simulating the rainfall, statistical
analysis of observed and simulated rainfall data was conducted. In order to generate the
future climate scenarios, LARS-WG modifies the historical rainfall data by adding monthly
change factors (the ratio of rainfall in the future and baseline periods) [51].

In this study, five GCMs from the Coupled Model Intercomparison Project Phase
5 (CMIP5) multi-model ensemble, which were incorporated in LARS-WG, were used to
generate the climate change scenario for the study area. The RCP8.5 scenario was chosen
for the present study, as it corresponds to the worst-case climate change scenario caused
by the highest greenhouse emission and radiative forcing level (8.5 Wm−2) in 2100. Since
the purpose of this study is mainly focused on the analysis of extreme events, the RCP8.5
was considered as a plausible selection [53]. The list of five GCMs used in this study is
presented in Table 2. The downscaled daily precipitation data from GCM outputs under
RCP8.5 scenario was generated by LARS-WG for the near (2021–2050) and intermediate
(2051–2080) future periods of the 21st century at each station of 11 meteorological stations
in HCMC.
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Table 2. The descriptions of the general circulation models (GCMs) from Coupled Model Intercomparison Project 5 (CMIP5)
used in the study.

GCMs Research Center Country Resolution

EC-EARTH EC—Earth consortium Europe 1.125◦ × 1.125◦

HadGEM2-ES UK Meteorological Office UK 1.25◦ × 1.88◦

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (NOAA GFDL) USA 2.5◦ × 2.0◦

MIROC5
The University of Tokyo, National Institute for

Environmental Studies, Japan Agency for Marine-Earth
Science and Technology

Japan 1.39◦ × 1.41◦

MPI-ESM-MR Max Planck Institute for Meteorology Germany 1.85◦ × 1.88◦

3.4. Model Evaluation Metrics

In this study, the performance of LARS-WG was evaluated according to the rela-
tive bias (RB), the mean differences (MDs), and Willmott Score (WS) [54] between the
observation-based and simulation-based series of corresponding extreme precipitation
indices. The mathematical formulas of those evaluation metrics are as follows:

RB =
∑N

n=1(Modn −Obsn)

∑N
n=1|Obsn|

(1)

MD =
1
N ∑N

n=1(Modn −Obsn) (2)

WS = 1−
1
N ∑N

n=1(Modn −Obsn)
2

1
N ∑N

n=1

(∣∣∣Modn −Obs
∣∣∣+ ∣∣∣Obsn −Obs

∣∣∣)2 (3)

where Modn and Obsn are the values of the nth simulation-based and observation-based
extreme precipitation indices in a sample of size N, respectively.

The mean difference (MD) is used for a direct comparison between the observed and
generated extreme indices, while the two-sample Student’s t-test is applied for testing
the statistical significance of those differences at the 95% confidence level. The relative
bias (RB) is used to measure the relative differences between the observed and generated
extreme indices, as well as to determine the overestimated or underestimated property of
the simulation. According to the study of Moriasi et al. (2015), the values of RB ≤ ±25%
indicate an acceptable performance of the model and the MD values of 0 indicate a perfect
performance of the model. The Willmott score (WS) or the Index of Agreement, whose
value varies between 0 and 1, is used as a standardized measurement of the degree of
model prediction error [55]. Particularly, the levels of model performance are classified
in a poor level if 0 ≤ WS < 0.3, a good level if 0.3 ≤ WS < 0.8, and an excellent level if
0.8 ≤WS ≤ 1.0.

3.5. Spatial Interpolation

The maps of extreme rainfall indices were built using interpolated techniques of
inverse distance weighting (IDW). This method had the assumption that the interpolated
points are the most influenced by the nearest points and the least influenced by the farthest
points. The IDW method was chosen for the present study, because it is widely applied to
spatial interpolation of rainfall data (Hadi and Tombul 2018); particularly it is applied to
HCMC, whose topography is mostly plain, and the orographic effect is negligible.
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4. Results and Discussion
4.1. Model Validation

In this section, the ability of the LARS-WG tool for reproducing extreme precipitation
indices was evaluated at each station for the baseline period of 1980–2009. Generally, the
results indicated the ability of the LARS-WG tool for reproducing the extreme indices as
its Willmott scores belonged to the good performance level (WS > 0.3) in most regions as
shown in Figure 3; the results of the t-test indicated that only few stations in the study
area (less than 36% of stations) obtained statistically significant differences between the
observation and simulation values, as shown in Table 3. Particularly, regarding the indices
CDD and CWD, the results of the Willmott scores indicated good agreement between the
simulation and observation as the WS values exceeded 0.3 for the entire region (ranged
from 0.31 to 0.57), whereas the index CWD shows the worst performance among other
indices as only good WS values (ranged 0.33 to 0.62) obtained at 6 out of 11 stations in
the research area. Furthermore, the relative bias indicated the underestimation of the
index CDD for most regions, especially in the central parts, whereas the overestimation of
the index CWD was observed in the same regions. Concerning the indices, RX1day and
RX5day, the high WS values (ranged from 0.33 to 0.67) and small negative biases were
apparent at most parts in the southern and central regions, whereas the lower WS values
(ranged from 0.17 to 0.28), as well as large positive biases, occurred in small parts of the
northern regions. About the indices, R20mm, R25mm, R95p, and SDII, the simulation
generally showed good performance as the WS values exceeded 0.3 for most regions
(ranged from 0.31 to 0.64), except in some parts in the central region the WS values were
observed slightly weaker scores (ranged from 0.14 to 0.28). Additionally, Figure 3 and
Table 3 show that the high values of WS are not always related to the lesser difference
between simulation-based and observation-based extreme indices (low values of RB and
MD) as shown in Equations (1)–(3).

Water 2021, 13, x FOR PEER REVIEW 8 of 29 
 

applied to HCMC, whose topography is mostly plain, and the orographic effect is negli-

gible. 

4. Results and Discussion 

4.1. Model Validation 

In this section, the ability of the LARS-WG tool for reproducing extreme precipitation 

indices was evaluated at each station for the baseline period of 1980–2009. Generally, the 

results indicated the ability of the LARS-WG tool for reproducing the extreme indices as 

its Willmott scores belonged to the good performance level (WS > 0.3) in most regions as 

shown in Figure 3; the results of the t-test indicated that only few stations in the study 

area (less than 36% of stations) obtained statistically significant differences between the 

observation and simulation values, as shown in Table 3. Particularly, regarding the indices 

CDD and CWD, the results of the Willmott scores indicated good agreement between the 

simulation and observation as the WS values exceeded 0.3 for the entire region (ranged 

from 0.31 to 0.57), whereas the index CWD shows the worst performance among other 

indices as only good WS values (ranged 0.33 to 0.62) obtained at 6 out of 11 stations in the 

research area. Furthermore, the relative bias indicated the underestimation of the index 

CDD for most regions, especially in the central parts, whereas the overestimation of the 

index CWD was observed in the same regions. Concerning the indices, RX1day and 

RX5day, the high WS values (ranged from 0.33 to 0.67) and small negative biases were 

apparent at most parts in the southern and central regions, whereas the lower WS values 

(ranged from 0.17 to 0.28), as well as large positive biases, occurred in small parts of the 

northern regions. About the indices, R20mm, R25mm, R95p, and SDII, the simulation gen-

erally showed good performance as the WS values exceeded 0.3 for most regions (ranged 

from 0.31 to 0.64), except in some parts in the central region the WS values were observed 

slightly weaker scores (ranged from 0.14 to 0.28). Additionally, Figure 3 and Table 3 show 

that the high values of WS are not always related to the lesser difference between simula-

tion-based and observation-based extreme indices (low values of RB and MD) as shown 

in Equations (1)–(3). 

 

Figure 3. Heatmap of the Willmott scores between observed and simulated extreme indices at each 

station for the baseline period (1980–2009). 
Figure 3. Heatmap of the Willmott scores between observed and simulated extreme indices at each
station for the baseline period (1980–2009).



Water 2021, 13, 120 9 of 27

Table 3. Relative bias (%) and mean differences (unit based on each index) between simulation-based and observation-based extreme indices during the baseline period (1980–2009).

Station CDD CWD R20mm R25mm R95p RX1day RX5day SDII

Paras RB MD RB MD RB MD RB MD RB MD RB MD RB MD RB MD

Ben Cat 6.8 6.0 −20.4 −2.1 * −7.5 −2.3 −6.3 −1.4 −11 1.4 3.6 3.1 −0.1 −0.2 −0.5 −0.1

Bien Hoa −32.2 −33.2 * 65.5 3.7 * 16.3 3.9 * 9.9 1.9 25.7 101.6 * 6.2 6.1 7.3 11.6 −15 −2.8 *

Binh Chanh −7.9 −6.9 5 0.4 9.5 2.3 16.5 3.0 * −7.3 −27.9 16.9 15.0 7.4 11.3 8.8 1.2 *

Can Gio 1.8 2.1 −8.2 −0.8 −52.7 −11.7 * −35.2 −3.8 * −38 −16.6 20.3 13.0 −17.5 −23.6 * −35 −6.0 *

Cat Lai −16.7 −15.8 2.4 0.2 −43.2 −23.7 * −49 −22.5 * −27 −98.2 1.4 1.7 −18.4 −44.0 * −37 −11.9 *

Cu Chi −19.3 −18.5 * 0.4 0.0 −1.4 −0.4 −1.4 −0.3 7.9 44.4 25.9 22.0 * 0.9 1.5 −4.2 −0.7

Hoc Mon 1.5 1.4 6.5 0.5 3.7 0.8 8.4 1.4 −3.2 −0.5 −1.7 −1.6 −4.5 −6.9 1.6 0.2

Nha Be −13.7 −12.1 12.1 1.0 3.2 0.9 −0.4 −0.1 −8.9 −14.1 −5.9 −5.8 −5.1 −8.6 3.3 0.5

TS Hoa −20.5 −15.9 15.8 1.6 * −4 −1.3 −3.1 −0.8 5.6 24.4 −0.2 −0.3 −7.4 −13.4 −1.8 −0.3

TT Hiep −11.2 −11.2 −11.6 −1.0 −0.6 −0.2 −4.5 −0.9 −14 −48.6 −5.5 −5.3 −10.1 −17.4 0.1 0.0

Vung Tau −24.5 −27.6 * −15.2 −1.5 5.4 1.3 7.1 1.3 8.5 31.6 10.2 11.3 9.5 16.7 4.7 0.7

* Statistically significant difference at the 95% confidence level.
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In addition, Figure 6(6.1–6.8) show the spatial distribution of the observation
(Figure 6(6.1a–6.8a)) and simulation (Figure 6(6.1b–6.8b)) extreme precipitation indices
during the baseline period (1980–2009), and relative differences between the simulation
and observation (Figure 6(6.1c–6.8c)). In general, the spatial distribution of the differences
between simulation and observation under those indices had similar trends—here, large
negative biases were apparent in small parts of the central and southern regions, while
positive biases mainly occurred in other regions. General speaking, the results show that
the output from the LARS-WG tool is acceptable for simulating the spatial pattern of the
extreme indices.

4.2. The Historical Observation of the Extreme Precipitation Indices

In this section, the mean annual values of each extreme indices and the corresponding
averaged slope of temporal trends during the historical period (1980–2017) at each station in
the study area were listed in Table 4. Generally, most extreme indices exhibited downward
trends at most stations of the study area during this period, which accounted for approxi-
mately 56.8% of the total number of the trends. However, only about one-third proportion
(approximately 33%) of all trends were statistically significant; in which the significant
downward and upward trends accounted for 19.3% and 13.6% proportion, respectively.

About the spatial distribution patterns, a majority of the significant trends frequently
occurred in the northern (Cu Chi Dist.) and southern (Can Gio Dist.) parts of the study
area, whereas most of the central regions demonstrated insignificant trends (Table 4).

4.3. Projected Future Extreme Precipitation Indices

In this study, the future extreme precipitation indices were calculated from the sta-
tistically downscaled outputs of five GCMs (EC-EARTH, HadGEM2-ES, GFDL-ESM2M,
MIROC5, and MPI-ESM-MR) as mentioned in Section 3.3 above. The daily rainfall at each
station in the study area was generated for the future period of 2021–2080 under the RCP8.5
emission scenario. The temporal variation of each spatially averaged extreme index for
the entire study area during the future period was illustrated in Figure 4. According to
the results, while two duration-based indices, CDD and CWD, show a high degree of
agreement among the five GCMs, the other extreme precipitation indices are generally
projected with high uncertainty levels, especially in the intermediate future period (2051–
2080). Particularly, three GCMs such as MIROC5, MPI-ESM-MR, and EC-Earth projected
higher values of extreme indices than two other GCMs, HadGEM2-ES and GFDL-ESM2M.

However, the multi-model ensemble mean generally presents the obviously increasing
trends in value at the majority of extreme precipitation indices during both future periods
lasting from 2021 to 2080 for the entire study area.

4.4. Climate Change Impact on the Precipitation Extremes by the Averaged Multi-Model Ensemble
4.4.1. Variability in Inter-Annual Changes

To produce more reliable results from simulation of extreme precipitation indices for
assessing the impact of climate change, a multi-model ensemble (MME) at each station is
prepared by taking the arithmetic mean of the extreme indices computed from the output
from the five different GCMs mentioned in the previous section.
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Table 4. Mean annual values with a standard variation of extreme precipitation indices and the corresponding averaged slope of trend at each station during the historical period of
1980–2017 in Ho Chi Minh City (HCMC).

Indices Stats CDD CWD R20mm R25mm R95p RX1day RX5day SDII

Unit
Mean ± SD days days days days mm mm mm mm/day

Avg. Trend days/year days/year days/year days/year mm/year mm/year mm/year mm/day/year

North Region

Cu Chi
Mean ± SD 97.1 ± 37.8 8.4 ± 3.6 28.4 ± 6 22.1 ± 5.1 343.9 ± 192 86.7 ± 27.6 161.7 ± 34.9 16.9 ± 3.1

Avg. Trend −0.44 −0.11 −0.24 * −0.18 * −12.63 * 0.37 −1.78 * −0.09 *

Hoc Mon
Mean ± SD 86.5 ± 43.6 7.9 ± 3.5 23.6 ± 8.8 17.2 ± 7.3 327.6 ± 211.5 90.1 ± 25.9 153.4 ± 42.7 15 ± 4

Avg. Trend −1.12 0.06 0.26 0.22 3.07 0.22 0.15 −0.09

Central Region

Binh Chanh
Mean ± SD 82 ± 41.6 8.9 ± 2.7 24.8 ± 6.5 17.9 ± 5.9 370.9 ± 226.8 88 ± 33.5 155 ± 39.8 13.7 ± 2.1

Avg. Trend −1.28 0.01 0.2 0.22 * 3.05 −0.35 0.63 0.01

Cat Lai
Mean ± SD 89.8 ± 38.6 6.8 ± 3.6 53.5 ± 14.5 44.2 ± 13.1 405.7 ± 322.5 114.2 ± 32.2 232 ± 67.4 31.3 ± 5.2

Avg. Trend −0.63 −0.11 * −0.21 −0.4 −14.91 * −0.56 −2.83 −0.37 *

Nha Be
Mean ± SD 84.1 ± 41.7 8.5 ± 2.3 28.2 ± 7.2 21.6 ± 5.9 411.1 ± 251.6 98.8 ± 33.1 172.1 ± 41.1 15.7 ± 2.4

Avg. Trend −0.67 −0.06 −0.2 −0.16 −0.89 0.04 0.03 −0.05

Tan Son Hoa
Mean ± SD 73.8 ± 38 10.2 ± 2.5 32.4 ± 5.7 25.1 ± 4.6 464.2 ± 205.1 104 ± 28.4 185.6 ± 39.8 15.5 ± 1.7

Avg. Trend −0.32 −0.07 * −0.05 −0.02 3.87 0.39 −0.44 0.01

South Region

TT Hiep
Mean ± SD 93.1 ± 45.1 9.2 ± 3.6 26.2 ± 5 19.7 ± 4.7 364.8 ± 160.4 97.4 ± 39.8 168.8 ± 48.4 15.8 ± 2.4

Avg. Trend −1.67 * 0.13 * −0.01 −0.03 1.51 −0.39 −0.89 −0.15 *

Can Gio
Mean ± SD 120.3 ± 32.9 8.9 ± 3.4 22.3 ± 8.2 11.9 ± 7.1 288.7 ± 255.7 69.7 ± 39 138.5 ± 34.3 16.4 ± 2.1

Avg. Trend −0.08 −0.03 −0.04 0.4 * 16.62 * 2.01 * 1.97 * −0.14 *
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Table 4. Cont.

Indices Stats CDD CWD R20mm R25mm R95p RX1day RX5day SDII

Neighborhood Region

Ben Cat
Mean ± SD 89.3 ± 35.9 10.1 ± 3.3 30.7 ± 7.5 22.1 ± 6.4 389.2 ± 233.1 90.4 ± 33.5 160.6 ± 38.4 15.8 ± 2

Avg. Trend −0.13 −0.05 0.22 0.22 * 4.9 0.16 0.58 0.02

Bien Hoa
Mean ± SD 95.2 ± 42.2 6.6 ± 2.9 25.6 ± 8.5 20.3 ± 6.7 331.2 ± 189.5 100.6 ± 29.4 162 ± 50 17.5 ± 2.8

Avg. Trend −2.35 * 0.22 * 0.62 * 0.45 * 8.11 * 0.55 2.68 * −0.11 *

Vung Tau
Mean ± SD 108.9 ± 38.4 9.7 ± 3.4 23.1 ± 5.2 17.5 ± 4.2 358.5 ± 127.1 110.1 ± 44.1 173.5 ± 49.6 15.1 ± 2

Avg. Trend −0.49 0.03 −0.29 * −0.19 * −3.84 −1.52 −1.38 −0.11 *

* Statistically significant trend at the 95% confidence level.
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In the following section, the temporal variation of percentage changes in each extreme
precipitation indices between the future (2021–2080) and baseline (1980–2009) periods over
the entire study area is analyzed and discussed. The temporal variation of changes in
spatially averaged MME extreme indices and its corresponding magnitude of linear trend
in each future period were illustrated in Figure 4 and Table 5. As shown in Table 5, the
decreasing trend is projected in most extreme precipitation indices during the near future
period, while the opposite tendency mainly occurs during the intermediate future period.
However, except for the index CDD, the temporal variation of relative changes in other
extreme indices is expected to be increased during both near (2021–2050) and intermediate
(2051–2080) future periods, in which only four extreme indices, R20mm, R25mm, RX5day,
and SDII, show the statistically significant trends.

Table 5. Trend in relative change between future and baseline periods (unit: % per decade).

Period CDD CWD R20mm R25mm R95p RX1day RX5day SDII

2021–2050 2.02 −0.25 −0.77 −0.34 −5.54 −0.69 2.21 −0.55

2051–2080 0.83 1.04 −0.26 1.82 0.28 0.79 2.69 0.65

Figure 5 illustrates the temporal variation of the relative changes in the spatially
averaged extreme indices between the future and baseline periods over the entire study
area. Figure 5 shows the multi-model ensemble mean with 5–95% interquartile range of
five different GCMs under RCP8.5 scenario. Considering the duration extreme indices, the
tendency of the index CDD presents an obviously increasing trend in both future periods;
while CWD gradually tends to decrease in the near future period, then slightly increase
in the intermediate future period. Particularly, the annual mean value of the percentage
changes in CDD indicates an increase by 0.15% (from−16.05% to 16.80%) in the near future
period (2021–2050), and by 0.7% (from −12.46% to 14.73%) in the intermediate future
period (2051–2080). In contrast, the future index CWD is expected to increase by 4.07%
(from −10.21% to 20.52%) and by 3.76% (from −8.63% to 17.34%) at the end of the near
and intermediate future periods with respect to those of the reference period.

In regard to the indices of heavy and extreme heavy precipitation days, R20mm and
R25mm, the annual changes in the future are comparatively similar with respect to the
baseline period. The length of heavy and extremely heavy rainfall days is expected to
be shortened during the near future period (2021–2050) with the projected decrease in
R20mm and R25mm by −2.67% (from −18.46% to 10.52%) and −1.08% (from −18.79%
to 13.66%), respectively. However, the MME predicts the indices R20mm and R25mm to
be increased by 3.75% (from −18.74% to 25.59%) and 5.65% (from −21.29% to 31.26%) by
2080, respectively.

Concerning the indices RX1day and RX5day, it shows that the annual percentages of
change in the near future period are slightly lower than those in the intermediate future
period. Moreover, the index RX5day clearly shows the strongest increasing trend among
other indices during both future periods with the mean value of percentage increase by
5.11% (from −8.85% to 20.78%) and 9.44% (from −10.33% to 28.37%) at the end of two
future periods (in 2050 and 2080), respectively. Although the RX1day exhibits a downward
trend during the early future period, an increase of 5.56% (from −9.67% to 21.84%) and
10.5% (from −10.04% to 10.50%) is predicted by the mean models at the end of the 2050
and 2080 periods, respectively.
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About the extreme intensity indices, the predicted percentage of changes in the indices
R95p and SDII approximately tend to be comparable behavior in the future, with a decreas-
ing trend in the near future period, and an increasing tendency in the later future period.
Both indices are projected to be increased in the future periods; however, the increasing
percentage of the index R95p is much larger than the increasing percentage of the index
SDII. Meanwhile, the multi-model ensemble predicts an increase of 5.5% (from −13.23%
to 23.72%) and 11.35% (from −17.94% to 43.67%) for the index R95p by 2050 and 2080,
respectively. The percentage of change in SDII is projected to be 0.77% (from −10.34% to
8.94%) and 5.37% (from −11.10% to 20.78%) at the end of two future periods, respectively.
Generally, the projected percentage changes, as well as the increasing rates in intensity
and frequency indices for future extreme rainfall, are predicted to be larger than those in
the duration indices, especially in the intermediate future period (2051–2080). In addition,
the extreme precipitation indices show larger variation in the intermediate future period
(2051–2080) in comparison to those in the near future period (2021–2050).

4.4.2. Distribution of Spatial Changes

In this section, the spatial distribution of the MME-projected mean relative changes in
extreme precipitation indices between the near (2021–2050) and intermediate
(2051–2080) future periods and the baseline period (1980–2009) over the study area is
shown in Figure 6 including Figure 6(6.1–6.8). Furthermore, the statistical significance,
stability, and magnitude of the trend in the distribution of spatial changes were determined
and computed using the M-K statistical test and the Sen’s estimator for particular 25-year
moving time spans within the future periods. Afterwards, the dominated trend during
these future periods at each station is also illustrated in these figures.

Generally, in comparison with the baseline period, the absolute changes of extreme
indices in the intermediate future period (2051–2080) show notably higher than those in
the near future period (2021–2050). In which, the largest absolute changes mainly occur in
the southern regions, while some parts of the northern and central areas often exhibit little
changes (i.e., lowest absolute changes). In terms of relative changes in extreme rainfall
indices in the same projection period, the multi-model ensemble predicts an increase in
most indicators in the south and the central regions, and a decline of those indices in the
north of the study area.

Particularly, regarding the index CDD, the relative changes between the future and
historical periods, along with the statistical significance, stability, and magnitude of trends,
are shown in Figure 6(6.1). During the near future period (2021–2050), the averaged multi-
model ensemble predicts an increase in the index CDD for most regions in the central and
southern parts of the study area, whereby a variation of percentage changes in indices is
from 0.4 to 20.6%; the averaged growth rate is from 0.4 to 13.1 [days.decade−1]. However,
only three stations located in the southern region present significant increasing trends
during the near future period, in which the strongest and most stable upward trend in
CDD is predicted to occur at the Tam Thon Hiep Station. In contrast, a decrease ranging
from −20.1 to −8.7% is predicted in the northern regions, while Cu Chi Station shows a
slight increase by 3.7%; even though none of the downward trends is statistically significant.
In the intermediate future period (2051–2080), the spatial distribution of the CDD is similar
with that of the near future period in the study area, in which the positive percentage
changes concentrate in the central and southern parts, while negative values are distributed
mostly in the northern regions of the city. During this intermediate future period, the mean
percentage of changes in CDD is predicted to decrease from −20.1 to −1.7% at Cu Chi,
Hoc Mon, Can Gio, Bien Hoa, and Ben Cat, and to increase from 1.82 to 21.8% at the other
stations, whereby the averaged magnitude of increasing trend is ranging between 0.1 and
10.4 [days.decade−1] while the decreasing rate is from −2.9 to −0.8 [days.decade−1].
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Figure 6. Spatial distribution of the observation and simulation extreme precipitation indices (CDD, CWD, R20mm, R25mm, RX1day, RX5day, R95p and SDII) during the baseline period
(1980–2009); relative differences between the simulation and observation; relative changes between the near (2021–2050) and intermediate (2051–2080) future periods with respect to the
baseline period. In the sub-figures d and e, the contour lines indicate the averaged magnitude of trend in temporal variation of future relative changes (unit: day.year−1); the up/down
triangle symbols represent the significant levels of the dominating trend during the future period at corresponding stations; the percentage numbers inside the parenthesis indicate the
stability of trend at corresponding stations.
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In regard to the index CWD, the projected results shown in Figure 6(6.2) present the
west-to-east increasing trend for the percentage of changes in extreme indices with respect
to both future periods. Generally, the MME predicts few differences between the spatial
distribution as well as the volume of relative change of the index CWD in both future
periods. Particularly, in comparison with the historical period, the index CWD is predicted
to be decreased from −18 to −0.2%, mainly in the central regions and small parts of other
areas, while it is predicted to be increased from 0.9 to 11.4% mostly in the southern regions
in both future periods. Additionally, the trend in changes of the projected index CWD
shows statistically significant and stable tendency occurring at more stations in the near
future period (2021–2050) than that in the later future period (2051–2080).

The spatial distribution of annual mean relative change in the indices R20mm and
R25mm between the future and historical periods is shown in Figure 6(6.3,6.4). Generally,
in comparison to the historical period, the MME predicts a decrease in both extreme indices
in the near future period, while an increase in both indices is expected in the intermediate
future period in most regions of the study area. Additionally, the projection results indicate
that the future spatial distribution of percentage changes in the index R20mm is comparable
with that in the index R25mm. Particularly, in the near future period (2021–2050), the MME
predicts a decrease in the index R20mm varying from 2.1% to 10.2%, and in the index
R25mm varying from 1.1% to 13% over most regions, especially in the central (Binh Chanh)
and southern (Tam Thon Hiep) area. In comparison, an increase from 0.5 to 6% and 0.26
to 13.2% in the rest of this location is corresponding to the indices R20mm and R25mm,
respectively (Figure 6(6.3d,6.4d)). For the same projection period, an increasing trend in the
temporal changes of the indices’ values is projected to be dominated at most stations with
the average rates ranging from 0.4 to 0.9 [days.decade−1] for the index R20mm, and from
0.1 to 0.7 [days.decade−1] for the index R25mm. In the near future period, the stable and
strongly upward trends are projected to mainly occur in the central and southern regions,
while the downward trends are weak and unstable. In the intermediate future period
(2051–2080), the MME predicts increasing from 0.5 to 17.3% for the index R20mm in most
regions (with high values mostly distributed in the central and southern parts of the study
area), while it presents a nuance with an increase ranging from 1.5 to 21.9% for the index
R25mm in the similar spatial patterns. Additionally, during the intermediate future period,
a slight decrease of −1.6% and −4.2% is projected to occur in a small part of the central
area for R20mm and R25mm, respectively (Figure 6(6.3e,6.4e)). In this period, both extreme
indices, R20mm and R25mm, show strongly significant and stable increasing trends at most
stations and equally distributed across the study area, in which the averaged magnitude
of dominated trends is ranging from 0.5 to 2.1, and from 1 to 1.6 [days.decade−1] for the
indices, R20mm and R25mm, respectively.

The relative changes in the maximum 1-day and 5-day total rainfall amount (RX1day
and RX5day) between the future and the historical periods are shown in
Figure 6(6.5d,e–6.6d,e). The simulation results show that the spatial distribution of the
indices RX1day and RX5day in each future period is relatively similar.

Generally, in the near future period (2021–2050), the multi-model ensemble predicts
an average increase in RX1day from 3.5 to 14.4%, and of RX5day from 0.2 to 12.5% in most
regions, especially in the southern parts of the study area, while a decrease occurring in
small parts of the central and northern regions is expected from −6.9 to −1.1% and −5.4
to −0.4% for the indices RX1day and RX5day, respectively. In this period, the statistically
significant and stable increasing trends are dominated, and present high likelihood of
occurrence in the central and southern parts of the study area, along with the averaged
growing rates from (3.2–4.2) [mm/decade−1] and (1.8–8.5) [mm.decade−1] for the indices
RX1day and RX5day, respectively.

In the intermediate future period (2051–2080), the multi-model ensemble predicts
an increase in both extreme indices RX1day and RX5day to be fluctuated across entire
study area from 1.3 to 28.2% and 2.8 to 18.5%, respectively; particularly, the highest values
frequently concentrate in the southern regions. Besides, a slight decrease (less than 2.8%) on
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average for both indices is also presented in the small parts of central regions. Additionally,
the indices, RX1day and RX5day, are projected to demonstrate the statistically significant
and stable upward trends in the northern and central regions, wherein an increasing rate
of (0.8–10.1) [mm.decade−1] for the index RX1day, and of (2.1–9.1) [mm.decade−1] for
the index RX5day; the stable and downward trends are predicted in the southern parts
with a decreasing rate of −3.5 [mm.decade]−1 for the index RX1day and of (−1.9 to −7.0)
[mm.decade−1] for the index RX5day.

Considering changes in the future intensity indices, the relative differences between
the indices R95p and SDII in the future and historical period are shown in
Figure 6(6.7d,e–6.8d,e). In the period 2021–2050, the MME predicts a decrease in the
index R95p from −4.3 to −5.8% on average in some locations of the central and north-
ern regions, and an increase from 0.01 to 12.5% in the rest of study area, especially in
the southern regions (Figure 6(6.7d)). During the same period, the index R95p exhibits
statistically significant and stable downward trend in the north of the study area with the
averaged rates between −21.3 and −31.7 [days.decade−1], while the stable and significant
upward trends are projected for the central and southern regions with the increasing rates
varying from 21.1 to 33.5 [days.decade−1]. In the period 2051–2080, an average increase
from 0.02 to 22.3% is forecasted by the MME over the entire study area, along with the
northwestern-to-southeastern tendency of growth in the extreme indices (Figure 6(6.7e)).
In this period, the statistically significant and stable trends are projected to be occurred
in most regions. Moreover, in contrast to the near future period, the statistically strong
and stable upwards (11.7 to 71.2) [days.decade−1] are projected with high likelihood of
presence in the northern regions, while the statistically strong but poor-stability downward
trends (−7.6 to −15.8) [days.decade−1] are predicted to appear in the southern regions of
the city during this intermediate future period.

The mean models predict a decrease in the index SDII from−0.65% to−3.77% on aver-
age in the north and south of the study area, while an increase from 0.1 to 4.8% is projected
over entire central regions in the period 2021–2050 (Figure 6(6.8d)). During this period,
SDII presents the domination of the statistically significant and stable increasing trends at
most stations in the central (strong upwards) and southern regions (weak upwards), along
with the averaged magnitude ranging from 0.1 to 0.4 [mm.day−1.decade−1]. In the period
2051–2080, the MME forecasts an increase from 2.8 to 9.1% on average over the entire study
area, with high values being mainly observed in the central regions. During the same
projection period, the statistically significant and stable upward trends are dominated at
most stations over the study area (mainly distributed in the north and central regions)
with the averaged magnitude of trends varying from 0.3 to 0.8 [mm.day−1.decade−1]
(Figure 6(6.8e)).

5. Discussion

The results of the current study on the spatiotemporal trend in changes of extreme
precipitation indices between the future (2021–2080) and historical (1980–2009) periods
indicate a general increase in most extreme indices over most regions in Ho Chi Minh
City, especially in some parts of the southern and central areas. Currently, the studies
on the impacts of climate change on extreme weather events in Vietnam are still limited
in terms of quantity and quality of the research, especially studies using the extreme
indices proposed by ETCCDI. Most of these studies were conducted for the entire Vietnam
territory instead of focusing only on a specific location such as HCMC. To the best of our
knowledge, our study seems to be the first reports assessing and mapping the changes of
these extreme indices over HCMC for the future period in the context of climate change.
The findings in our paper are consistent with previous remarkable related studies [56–58].
Particularly, our main results are in agreement with the report on Climate Change and
Sea Level Rise Scenarios for Vietnam, which was a well-known and widely cited research
work on this topic and published by the Ministry of Natural Resources and Environment
of Vietnam (MONRE 2016), in which the authors only focused on the changes in RX1day
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and RX5day by the mid (2046–2065) and end (2080–2099) of 21st century with respect to
the baseline period (1986–2005) under RCP4.5 and RCP8.5 scenarios. According to the
report by MONRE, the RX1day and RX5day are expected to increase from 10 to 70% by the
mid-century under RCP8.5 scenario; in which, the indices for HCMC area are projected to
increase approximately between 10 and 30% with respect to the baseline period. In terms
of the intensity extreme indices, our projection results agree with previous notable studies
conducted by Ngo-Duc et al. on applying regional climate models (RegCM4) with quantile
mapping bias correction for evaluating extreme weather events over Southeast Asia regions
for the mid-century period [57,58]. Here, the authors suggested an overall increase in CDD,
CWD, SDII, R20mm, and R95p in the southern parts of Vietnam, especially in the rainy
season. These results are reaffirmed by Tangang et al. [59] in their recent study on future
changes in extreme precipitation indices under global warming of 2 ◦C; in which, the
significant and robust increasing changes in frequency and intensity indices are expected
to occur in the mid-future period [59]. From these results, the central and southern regions
of the city are warned to be threaten by flooding, while the plan of water management for
rural areas in the northern sides should be prepared in order to address and mitigate the
impact on agricultural sectors by potentially extreme droughts.

In this study, although the performance of the statistical downscaling tool and its
incorporated GCMs was evaluated and confirmed to be able to reproduce and generate ex-
treme precipitation indices, the model biases and uncertainties still remain in the projection
results, especially in the projected spatial changes. Therefore, it is essential to apply proper
bias correction methods, as well as more precise downscaling methods for maximizing the
model performance. Moreover, for the approach of multi-model ensemble, the unweighted
averaging multi-models used in this study are the simplest way but not effective when a
better skillful model could be underestimated (or vice versa). Thereby, further research
on individual model evaluation to create a weighted multi-model ensemble based on
the ranked models could be a promising approach in order to optimize the simulation
performance [60–62]. In addition, the relevant climate teleconnections (such as El Nino
Southern Oscillation or Sea Surface Temperature) have a significant contribution to the
behavior of climate extremes in the study area; therefore, their impacts on precipitation
extremes should be taken into account in further research.

6. Conclusions

In this paper, the projected temporal and spatial changes in selected ETCCDI extreme
precipitation indices between the future (2021–2080) and baseline period (1980–2009) in Ho
Chi Minh City (Vietnam) were evaluated in the context of climate change. The projected
extreme indices were computed based on daily rainfall data downscaled from five different
GCMs under an RCP8.5 scenario using the LARS-WG tool. The performance of the LARS-
WG tool for the simulation of extreme precipitation indices has been examined using the
model evaluation metrics, the Mann–Kendall statistical test and the Sen’s estimator, which
were also applied to analyze the significance, stability, and magnitude of trends in future
changes. A summary of the major findings of this study is as follows:

- The LARS-WG tool has presented adequate performance for reproducing the extreme
precipitation indices in most stations during the historical period (1980–2017), espe-
cially for simulating the spatial distribution of those indices. Notwithstanding, the
uncertainty in simulation results was probably inevitable. Notably, the simulation
tended to underestimate extreme indices in some parts of the central and southern
regions, while overestimating these indices in the northern regions. In addition,
the performance for simulating intensity indices is better than that for duration and
frequency indices, especially for CWD and R20mm.

- In the historical period (1980–2017), the high values of temporally mean extreme
indices were frequently observed in the central regions, while the low values of these
indices were mainly distributed in the northern and southern regions. During this
period, the decreasing trend in extreme indices were regularly observed at most
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stations in the study area. However, only 33% of this trend was significant and mainly
distributed in the north and south parts of the study area.

- In the future periods, the projected extreme precipitation indices were computed from
the downscaling from five different GCMs (EC-EARTH, HadGEM2-ES, GFDL-ESM2M,
MIROC5, and MPI-ESM-MR) under the RCP8.5 emission scenario. Afterwards, the
multi-model ensemble mean was calculated for evaluating the spatiotemporal changes
in the near (2021–2050) and intermediate (2051–2080) future extreme indices with
respect to the simulated indices in the baseline period (1980–2009). Generally, in
comparison with the historical period, the temporally relative changes in most ex-
treme precipitation indices are predicted to be increased during both future periods
(2021–2080), but the index CDD. In which, the extreme intensity and frequency indices
present a stronger magnitude and statistically significant increasing trends than those
of extreme duration indices during the future periods. The spatial distribution of
changes in future projected extreme indices across the study area is relatively system-
atic. In which, the highest values of mean absolute changes are frequently observed in
the southern regions, while the lowest values of mean absolute changes are regularly
observed in the northern and central areas of the study area in the future periods.

Moreover, the percentage changes in extreme indices in the intermediate future period
(2051–2080) present noticeably higher values than those in the near future period (2021–
2050) over most regions of the study area. In terms of relative changes in the same projection
period, the multi-model ensemble reasonably predicts an increase in most extreme indices,
and this mainly occurs in the southern regions. Meanwhile, a decrease in these indices
is often projected in the northern and some parts in the central region of the study area.
Furthermore, most stations obtain statistically insignificant and unstable trends in extreme
precipitation indices during the near future period (2021–2050), but present statistically
strong significance and high stability during the intermediate future period (2051–2080),
especially in the central and southern parts of the study area.

Consequently, the prediction of increasing trends in extreme precipitation indices,
especially for intensity and frequency of heavy and extreme heavy rainfall events, has
posed the potential risk of more frequent floods in the central and southern regions of
HCMC. Meanwhile, the projection shows a decrease in consecutive dry days in the northern
areas, which implies the potential risk of severe droughts occurring in the northern regions
of HCMC. Therefore, the simulation results in this paper could contribute a reasonable
assessment and detailed potential-risk maps based on the changes in extreme precipitation
indices across Ho Chi Minh City for the near and intermediate future periods in the
21st century. Although it is essential to reaffirm that these findings should be taken
into consideration with caution due to the sources of uncertainty, such as the GCMs and
statistical downscaling tool applied in this study, the achieved results could be recognized
as the informative scientific references for the city governors to develop and implement
comprehensive assessment, adaptation, and mitigation responding to the impact of extreme
weather events in the context of climate change in Ho Chi Minh City.
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