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Abstract In this paper, we introduce some new iterative methods for finding a com-
mon element of the set of points satisfying a Ky Fan inequality, and the set of fixed
points of a contraction mapping in a Hilbert space. The strong convergence of the iter-
ates generated by each method is obtained thanks to a hybrid projection method, un-
der the assumptions that the fixed-point mapping is a ξ -strict pseudocontraction, and
the function associated with the Ky Fan inequality is pseudomonotone and weakly
continuous. A Lipschitz-type condition is assumed to hold on this function when the
basic iteration comes from the extragradient method. This assumption is unnecessary
when an Armijo backtracking linesearch is incorporated in the extragradient method.
The particular case of variational inequality problems is examined in a last section.
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1 Introduction

Fixed-point problems and variational inequalities are very useful and efficient tools
in mathematics in the sense that they provide a unified framework for investigating
problems arising in engineering sciences, structural analysis, and other fields; see,
for instance, [1, 2]. A particular problem of interest is to find common elements of
the set of fixed points of operators and the set of solutions of variational inequalities
[3–9]. The motivation for studying such a problem is in its possible application to
mathematical models whose constraints can be expressed as fixed-point problems
and/or variational inequalities. This happens, in particular, in the practical problems
as signal processing, network resource allocation, image recovery; see, for instance,
[10–14]. The purpose of this work is to propose a strongly convergent method for
finding a common element of the set of fixed points of a wide class of operators and
the set of solutions of a variational problem associated with the Ky Fan inequality
[15]. This latter problem is very general in the sense that it includes, as special cases,
the optimization problem, the variational inequality, the saddle point problem, the
Nash equilibrium problem in noncooperative games, the fixed-point problem, and
others; see, for instance, [16–19] and references quoted therein. The interest of this
problem is that it unifies all these particular problems in a convenient way. Let us also
mention that this problem is often improperly called the “equilibrium problem”.

In most papers, the method used for solving the Ky Fan inequality problem is the
proximal point method [20–25] which consists in solving at each iteration a nonlinear
variational inequality problem. In this paper, we propose instead, to use an extragra-
dient method with or without the incorporation of a linesearch. At each iteration, one
or two convex minimization problems must be solved depending on the presence or
not of a linesearch. Working in a Hilbert space, these methods usually generate se-
quences of iterates that only converge weakly to a solution of the problem. However,
it is well known that strongly convergent algorithms are of fundamental importance
for solving problems in infinite dimensional spaces [26]. In the literature, there exist
two methods for obtaining the strong convergence from the weak convergence with-
out additional assumptions on the data of the problem: the viscosity method [13, 14,
27–29] and the hybrid projection method [30, 31]. In the latter method, the solution
set of the problem is outer approximated by a sequence of polyhedral subsets and
the sequence of iterates converges to the orthogonal projection of a given point onto
the solution set. In this paper, we incorporate the hybrid projection method into the
extragradient method in order to obtain a strongly convergent sequence to a solution
of the problem.

After recalling some preliminaries in Sect. 2, we combine in Sect. 3 the extragra-
dient method and the hybrid projection method for obtaining a strong convergence
algorithm under a Lipschitz-type condition on the function defining the Ky Fan in-
equality. In Sect. 4, we modify the previous algorithm in order to avoid the use of the
Lipschitz-type property. The strategy is to replace the second step of the extragradi-
ent method by a linesearch followed by a projection. Several variants of the algorithm
are obtained associated with different projections. Finally, in Sect. 5, we examine the
particular case of variational inequality problems.
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2 Preliminaries

Let C be a nonempty, closed, convex set in a real Hilbert space H and let f be a
bifunction from C × C to R. We consider the following problem:

(EP) Find x∗ ∈ C such that f
(
x∗, y

) ≥ 0 for every y ∈ C.

We refer to this problem as the Ky Fan inequality [15], and we denote the set of
solutions of (EP) by E(f ). Simultaneously, we consider the fixed-point problem:

Find x∗ ∈ C such that Sx∗ = x∗,

where S is a nonexpansive mapping from C to C. The set of fixed points of S is
denoted by Fix(S).

When f (x, y) = 〈F(x), y − x〉 for every x, y ∈ C, where F : C → H is a con-
tinuous mapping, and 〈·, ·〉 denotes the scalar product in H , the Ky Fan inequality
problem reduces to a variational inequality problem, denoted (VIP). It consists in
finding a point x∗ ∈ C such that

〈
F

(
x∗), y − x∗〉 ≥ 0 for every y ∈ C.

The set of solutions of (VIP) is denoted by VI(F ).
Most of the methods used in the literature for solving the fixed-point problem are

derived from Mann’s iteration algorithm [32], namely: Given x0 ∈ C, compute, for
all n ∈ N,

xn+1 = αnxn + (1 − αn)Sxn,

where the sequence {αn} must satisfy some properties to force the weak convergence
of the sequence {xn} to a fixed point of S.

On the other hand, many methods devoted to finding an element of E(f ) use the
following algorithm: Given x0 ∈ C, find, for all n ∈ N, xn+1 ∈ C such that

f (xn+1, y) + 1

rn
〈y − xn+1, xn+1 − xn〉 ≥ 0 for every y ∈ C, (1)

where the sequence {rn} is positive. The combination of these two methods gives rise
to the following algorithm for finding an element of E(f ) ∩ Fix(S): Given x0 ∈ H ,
compute

{
zn ∈ C such that f (zn, y) + 1

rn
〈y − zn, zn − xn〉 ≥ 0 for every y ∈ C,

xn+1 = αnxn + (1 − αn)Szn,

for all n ∈ N. The sequence {xn} generated by this scheme converges weakly to some
x∗ ∈ E(f ) ∩ Fix(S), provided that {αn} ⊂ [a, b] for some a, b ∈]0,1[, and {rn} ⊂
]0,∞[ satisfy lim inf rn > 0, [25, Theorem 4.1].

In this paper, we propose to consider an extragradient-type iteration instead of the
proximal iteration used above. Introduced by Korpelevich [33] for solving variational
inequalities, the extragradient method uses two projections per iteration:

Given xn ∈ C, compute

yn = PC

(
xn − λnF (xn)

)
and xn+1 = PC

(
xn − λnF (yn)

)
, (2)
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where PC denotes the orthogonal projection onto C. Let us recall that this method
is convergent when F is pseudomonotone and Lipschitz continuous. Many papers
introduce the extragradient method for finding a common element of the set of fixed
points of a nonexpansive mapping and the set of solutions of the variational inequality
for a monotone Lipschitz continuous mapping [3–9].

Recently, the extragradient method has been generalized by Tran et al. [34] for
solving the Ky Fan inequality in R

n. In that case, the two steps (2) become: Given
xn ∈ C, find successively yn and xn+1 as follows:

{
yn = arg miny∈C{λnf (xn, y) + 1

2‖y − xn‖2},
xn+1 = arg miny∈C{λnf (yn, y) + 1

2‖y − xn‖2},
where {λn} ⊂ ]0,1]. This method has been proven convergent to some x∗ ∈ E(f )

when f is pseudomonotone and satisfies a Lipschitz-type property. However, this
latter condition is very strong and difficult to check. So, in [34], the authors replaced
the computation of xn+1 by an Armijo backtracking linesearch, followed by a projec-
tion onto an hyperplane. More precisely, given xn ∈ C, the iterates yn, zn, and xn+1

are calculated as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yn = arg miny∈C{λnf (xn, y) + 1
2‖y − xn‖2},

zn = (1 − γ m)xn + γ myn, where m is the smallest nonnegative integer

such that f (zn, xn) − f (zn, yn) ≥ α
2λn

‖xn − yn‖2,

xn+1 = PC(xn − σngn) with gn ∈ ∂2f (zn, xn) = ∂[f (zn, ·)](xn) and

σn = f (zn, xn)/‖gn‖2,

where the parameters α, γ , αn, and λn are chosen as explained in [34]. Doing so, the
convergence is obtained without a Lipschitz-type condition.

Our aim, in this paper, is first to combine the extragradient iteration (with or
without a linesearch) and the fixed-point iteration, and after to use a hybrid pro-
jection method to obtain a sequence {xn} that converges strongly to a point x∗ ∈
E(f ) ∩ Fix(S).

To end this section, we give some results that are generalizations, in infinite di-
mensional spaces, of Theorem 10.8 and Corollary 10.8.1 in [35]. They will be used
in Sect. 4.

Proposition 2.1 Let H be a real Hilbert space. Consider {ϕn} a sequence of contin-
uous convex functions from H into R, and ϕ a continuous convex function from H

into R. If {ϕn} converges pointwise to ϕ on H , then there exists η > 0 such that {ϕn}
converges uniformly to ϕ on ηB where B denotes the unit closed ball in H .

Proof Since, by assumption, the sequence {ϕn(x)} is bounded for every x ∈ H , it
follows from Theorem 2.2.22 in [36] that the sequence {ϕn} is locally equi-Lipschitz
on H , and thus also locally equi-bounded on H . So, there exist δ > 0 and M > 0
such that, for every x ∈ δB and n ∈ N, we have ϕn(x) ≤ M .

Now, let S be the collection of singletons in H . Since the sequence {ϕn} con-
verges pointwise to ϕ, it also S -converges to ϕ (see Lemma 1.4 in [37]). Then the
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assumptions of Lemma 1.5 in [37] are satisfied with W = {0}, and consequently {ϕn}
converges uniformly to ϕ on ηB for some 0 < η < δ. �

Corollary 2.1 Let {ϕn} be a sequence of continuous convex functions from H into R,
and let ϕ be a continuous convex function from H into R such that

lim sup
n→∞

ϕn(x) ≤ ϕ(x) ∀x ∈ H.

Then there exists η > 0 such that, for every ε > 0, there exists n0 ∈ N such that

ϕn(x) ≤ ϕ(x) + ε ∀n ≥ n0, ∀x ∈ ηB,

where B denotes the unit closed ball in H .

Proof Let ψn = max{ϕn,ϕ}. Then the sequence {ψn} of convex continuous functions
converges pointwise to ϕ on H . So, by Proposition 2.1, there exists η > 0 such that
{ψn} converges uniformly to ϕ on ηB . Hence, for every ε > 0, there exists n0 ∈ N

such that
∣∣ψn(x) − ϕ(x)

∣∣ < ε ∀n ≥ n0, ∀x ∈ ηB.

Since ϕn ≤ ψn and ψn(x) − ϕ(x) ≥ 0, we obtain the desired result

ϕn(x) ≤ ψn(x) < ϕ(x) + ε ∀n ≥ n0, ∀x ∈ ηB. �

3 An Extragradient Algorithm

In this section, first we combine the extragradient method for solving (EP) with a
fixed-point method. More precisely, we consider the sequences {xn}, {yn}, {zn}, and
{tn} generated by x0 ∈ C and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yn = arg miny∈C{λnf (xn, y) + 1
2‖y − xn‖2},

zn = arg miny∈C{λnf (yn, y) + 1
2‖y − xn‖2},

tn = αnxn + (1 − αn)[βnzn + (1 − βn)Szn],
xn+1 = tn,

for every n ∈ N, where {αn} ⊂ [0,1[, {βn} ⊂ ]0,1[, and {λn} ⊂ ]0,1].
Here, we assume that the following conditions are satisfied on the bifunction f :

C × C → R.

(A1) f (x, x) = 0 for every x ∈ C;
(A2) f is pseudomonotone on C, i.e., f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0 ∀x, y ∈ C;
(A3) f is jointly weakly continuous on C × C in the sense that, if x, y ∈ C and {xn}

and {yn} are two sequences in C converging weakly to x and y, respectively,
then f (xn, yn) → f (x, y);

(A4) f (x, ·) is convex, lower semicontinuous, and subdifferentiable on C for every
x ∈ C;
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(A5) f satisfies the Lipschitz-type condition: ∃c1 > 0,∃c2 > 0, such that for every
x, y, z ∈ C,

f (x, y) + f (y, z) ≥ f (x, z) − c1‖y − x‖2 − c2‖z − y‖2.

It is easy to see that if f satisfies the properties (A1)–(A4), then the set E(f )

of solutions to the Ky Fan inequality is closed and convex.

Remark 3.1 A first example of function f satisfying assumption (A5), is given by

f (x, y) = 〈
F(x), y − x

〉
for every x, y ∈ C,

where F : C → H is Lipschitz continuous on C (with constant L > 0) [18]. In that
example, c1 = c2 = L/2. Another example, related to the Cournot–Nash equilibrium
model, is described in [34, p. 768]. The function f : C ×C → R is defined, for every
x, y ∈ C, by

f (x, y) = 〈
F(x) + Qy + q, y − x

〉
,

with C = {x ∈ R
n : Ax ≤ b}, F : C → R

n, Q ∈ R
n×n, a symmetric positive semidef-

inite matrix, and q ∈ R
n. If F is Lipschitz continuous on C (with constant L > 0),

then f satisfies (A5) with c1 > 0, c2 > 0 such that 2
√

c1c2 ≥ L + ‖Q‖.

Furthermore, we also suppose that the mapping S satisfies the condition:

(B1) S is a ξ -strict pseudocontraction mapping for some ξ ∈ [0,1[.
Let us recall that S is a ξ -strict pseudocontraction mapping iff there exists a scalar

ξ ∈ [0,1[ such that

‖Sx − Sy‖2 ≤ ‖x − y‖2 + ξ
∥∥(x − Sx) − (y − Sy)

∥∥2 for every x, y ∈ C.

It is easy to see that a nonexpansive mapping on C is also a 0-strict pseudocontraction
mapping. Furthermore [30], if S is a ξ -strict pseudocontraction mapping, then the
fixed-point set Fix(S) is closed and convex and the mapping I − S is demiclosed at
zero, i.e., satisfies the property

xn ⇀ x (weakly) and Sxn − xn → 0 (strongly) ⇒ Sx = x.

In the sequel, we also suppose that the sequences of parameters {αn}, {βn}, and
{λn} satisfy the conditions

(P)

{ {αn} ⊂ [0, c] for some c < 1, {βn} ⊂ [d, b] for some 0 ≤ ξ < d ≤ b < 1,

{λn} ⊂ [λmin, λmax], where 0 < λmin ≤ λmax < min{ 1
2c1

, 1
2c2

}.
Now, let {xn}, {yn}, {zn}, and {tn} be the sequences generated by the combination

of the extragradient method and the fixed-point method described at the beginning of
this section. These sequences satisfy the following properties:

Proposition 3.1 [27, Lemma 3.1] For every x∗ ∈ E(f ), and every n ∈ N, one has

(i) 〈xn − yn, y − yn〉 ≤ λnf (xn, y) − λnf (xn, yn) ∀y ∈ C,
(ii) ‖zn − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − 2λnc1)‖yn − xn‖2 − (1 − 2λnc2)‖zn − yn‖2.
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Proposition 3.2 For every x∗ ∈ E(f ) ∩ Fix(S), and every n ∈ N, one has
∥∥tn − x∗∥∥2 ≤ ∥∥xn − x∗∥∥2 − (1 − αn)(1 − 2λnc1)‖yn − xn‖2

− (1 − αn)(1 − 2λnc2)‖zn − yn‖2

− (1 − αn)(1 − βn)(βn − ξ)‖zn − Szn‖2.

Proof Let x∗ ∈ E(f ) ∩ Fix(S). Using the convexity of ‖ · ‖2 and the equality
∥
∥tx + (1 − t)y

∥
∥2 = t‖x‖2 + (1 − t)‖y‖2 − t (1 − t)‖x − y‖2,

valid for any t ∈ [0,1] and for any x, y ∈ H , we obtain successively
∥∥tn − x∗∥∥2 = ∥∥αn

(
xn − x∗) + (1 − αn)

[
βnzn + (1 − βn)Szn − x∗]∥∥2

≤ αn

∥∥xn − x∗∥∥2 + (1 − αn)
∥∥βnzn + (1 − βn)Szn − x∗∥∥2

= αn

∥∥xn − x∗∥∥2 + (1 − αn)
[
βn

∥∥zn − x∗∥∥2 + (1 − βn)
∥∥Szn − x∗∥∥2

− βn(1 − βn)‖Szn − zn‖2]

≤ αn

∥
∥xn − x∗∥∥2 + (1 − αn)

[
βn

∥
∥zn − x∗∥∥2 + (1 − βn)

∥
∥zn − x∗∥∥2

+ (1 − βn)ξ‖zn − Szn‖2 − βn(1 − βn)‖Szn − zn‖2]

= αn

∥∥xn − x∗∥∥2 + (1 − αn)
∥∥zn − x∗∥∥2

− (1 − αn)(1 − βn)(βn − ξ)‖Szn − zn‖2, (3)

where we have used the ξ -strict pseudo-contraction property of the mapping S to
get the last inequality. Finally, it remains to apply Proposition 3.1(ii) to obtain the
announced result. �

In order to obtain the strong convergence of the sequence {xn} generated by the
combination of the extragradient method and the fixed-point method, we can use the
following result.

Proposition 3.3 [30] Let K be a nonempty closed convex subset of H . Let u ∈ H

and let {xn} be a sequence in H . If any weak limit point of {xn} belongs to K , and
‖xn − u‖ ≤ ‖u − PKu‖ for all n ∈ N, then xn → PKu.

In order to apply Proposition 3.3 in our context, we set K = E(f ) ∩ Fix(S) and
u = x0. Furthermore, we impose that the sequence {xn} generated by our algorithms
satisfies, for all n ∈ N, the inequality

‖xn − x0‖ ≤ ‖xn+1 − x0‖ ≤ ‖x̃0 − x0‖, (4)

where x̃0 = PE(f )∩Fix(S)x0. In that case, the sequence {‖xn − x0‖} is convergent and
the sequence {xn} is bounded. These properties will be useful to prove that any weak
limit point of {xn} belongs to E(f ) ∩ Fix(S).



612 J Optim Theory Appl (2012) 155:605–627

In order to construct a sequence {xn} satisfying (4), we consider an outer approxi-
mation method, that is, we construct a sequence {Ωn} of subsets of C such that

Ωn ⊃ E(f ) ∩ Fix(S) ∀n ∈ N and PΩnx0 → x̃0 as n → ∞,

and we set xn+1 = PΩnx0. In that purpose, from the equality

‖xn+1 − x0‖2 = ‖xn+1 − xn‖2 + ‖xn − x0‖2 + 2〈xn+1 − xn, xn − x0〉, (5)

we observe that the first inequality of (4) is satisfied when 〈xn+1 − xn, xn − x0〉 ≥ 0,
i.e., when xn+1 ∈ Dn, where

Dn = {
z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0

}
.

On the other hand, when the sequences of parameters satisfy (P), it follows from
Proposition 3.2 that

Cn = {
z ∈ C : ‖tn − z‖ ≤ ‖xn − z‖} ⊃ E(f ) ∩ Fix(S).

Consequently, if we set Ωn = Cn∩Dn, and prove that Cn∩Dn ⊃ E(f )∩Fix(S), then
xn+1 = PCn∩Dnx0 will satisfy the inequalities (4). It is the aim of the next proposition.

Proposition 3.4 For every n ∈ N, the sets Cn and Dn defined above are closed and
convex. Furthermore, when E(f ) ∩ Fix(S) �= ∅ and xn+1 = PCn∩Dnx0, one has

E(f ) ∩ Fix(S) ⊂ Cn ∩ Dn.

Proof Obviously, Cn and Dn are closed and Dn is convex for every n ∈ N. Since we
can write Cn under the form

Cn = {
z ∈ C : ‖tn − xn‖2 + 2〈tn − xn, xn − z〉 ≤ 0

}
,

we see immediately that Cn is also convex for every n ∈ N. Furthermore, by Propo-
sition 3.2, we have that E(f ) ∩ Fix(S) ⊂ Cn for every n ∈ N.

Next, we prove, by induction on n, that E(f ) ∩ Fix(S) ⊂ Cn ∩ Dn.
For n = 0, we have D0 = C and E(f )∩ Fix(S) ⊂ C0 ∩ D0. Now, suppose that for

some n ∈ N, E(f ) ∩ Fix(S) ⊂ Cn ∩ Dn. Since E(f ) ∩ Fix(S) is nonempty, Cn ∩ Dn

is a nonempty closed convex subset of C. So, xn+1 = PCn∩Dnx0 is well defined, and
〈xn+1 − z, x0 − xn+1〉 ≥ 0 holds for every z ∈ Cn ∩ Dn. Since E(f ) ∩ Fix(S) ⊂
Cn ∩ Dn, we have, in particular, 〈xn+1 − z, x0 − xn+1〉 ≥ 0, for every z ∈ E(f ) ∩
Fix(S), and consequently, E(f ) ∩ F(S) ⊂ Dn+1. Therefore, we obtain E(f ) ∩
Fix(S) ⊂ Cn+1 ∩ Dn+1. �

The inequalities (4) being satisfied, the sequence {xn} defined by xn+1 =
PCn∩Dnx0, for every n ∈ N, is also bounded, and to obtain the strong convergence
of that sequence to the projection of x0 onto E(f ) ∩ Fix(S), it is sufficient, thanks to
Proposition 3.4, to prove that every weak limit point of {xn} belongs to E(f )∩Fix(S).
This method is known in the literature as the hybrid projection method [30]. It is that
method we will use in each of our algorithms to get the strong convergence of the
iterates. Combining the hybrid projection method described above, with the extragra-
dient method, we obtain the following basic algorithm.
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Algorithm 1

Step 0. Choose the sequences {αn} ⊂ [0,1[, {βn} ⊂ ]0,1[, and {λn} ⊂ ]0,1].
Step 1. Let x0 ∈ C. Set n = 0.
Step 2. Solve successively the strongly convex programs

min
y∈C

{
λnf (xn, y) + 1

2
‖y − xn‖2

}
and

min
y∈C

{
λnf (yn, y) + 1

2
‖y − xn‖2

}

to obtain the unique optimal solutions yn and zn, respectively.
Step 3. Compute tn = αnxn + (1 − αn)[βnzn + (1 − βn)Szn].

If yn = xn and tn = xn, then STOP: xn ∈ E(f ) ∩ Fix(S).
Otherwise, go to Step 4.

Step 4. Compute xn+1 = PCn∩Dnx0, where

Cn = {
z ∈ C : ‖tn − z‖ ≤ ‖xn − z‖} and

Dn = {
z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0

}
.

Step 5. Set n := n + 1, and go to Step 2.

Before proving the strong convergence of the iterates generated by Algorithm 1,
we justify the stopping criterion in the next proposition.

Proposition 3.5 If yn = xn, then xn ∈ E(f ). If yn = xn and tn = xn, then xn ∈
E(f ) ∩ Fix(S).

Proof When yn = xn, it follows from Proposition 2.1(i) that

0 ≤ λnf (xn, y) − λnf (xn, xn) = λnf (xn, y)

holds, for every y ∈ C. But this means that xn ∈ E(f ).
On the other hand, when yn = xn and tn = xn, we have that zn = xn, and thus

xn = αnxn + (1 − αn)
[
βnxn + (1 − βn)Sxn

]
.

Since, by assumption, 1 − αn > 0 and 1 − βn > 0, it follows that xn = Sxn. So,
xn ∈ Fix(S). �

Now we suppose that the STOP, in Step 3, never occurs in Algorithm 1 and we
prove the strong convergence of the infinite sequence {xn} generated by this algorithm
to the projection of x0 onto E(f ) ∩ Fix(S).

Theorem 3.1 Let C be a nonempty, closed, and convex subset of H . Let f be a
function from �×� into R satisfying conditions (A1)–(A5), and let S be a mapping
from C to C satisfying conditions (B1), and such that E(f ) ∩ Fix(S) �= ∅. Suppose
that the sequences {αn}, {βn}, and {λn} satisfy the conditions (P). Then the sequence
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{xn} generated by Algorithm 1 converges strongly to the projection of x0 onto the set
E(f ) ∩ Fix(S).

Proof Let {xn} be the infinite sequence generated by Algorithm 1. Since we use the
hybrid projection method, it follows from our previous discussion that the sequence
{xn} generated by Algorithm 1 satisfies the inequalities (4), and thus is bounded.
Consequently, from Proposition 3.3, the strong convergence of the sequence {xn} to
the projection of x0 onto Fix(S) ∩ E(f ) holds, provided that every weak limit point
of {xn} is an element of E(f ) ∩ Fix(S). So, let x̄ be a weak limit point of {xn}, and
suppose that xni

⇀ x̄. Since C is closed and convex, it is also weakly closed, and
thus x̄ ∈ C. The proof of x̄ ∈ E(f ) ∩ Fix(S) is done in several steps.

Step 1. ‖xn+1 − xn‖ → 0, ‖xn − tn‖ → 0, ‖xn − yn‖ → 0, ‖xn − zn‖ → 0,
‖Szn − zn‖ → 0.

The sequence {‖xn − x0‖}, being nondecreasing and bounded thanks to (4), is con-
vergent to some a ≥ 0. But then, since xn+1 ∈ Dn, it follows from (5) that, for every
n ∈ N,

‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2, (6)

and thus that ‖xn+1 − xn‖ → 0, because the right-hand side of (6) tends to zero.
Now, ‖tn − xn+1‖ ≤ ‖xn − xn+1‖ because xn+1 ∈ Cn. Hence,

‖xn − tn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − tn‖ ≤ 2‖xn − xn+1‖.
Since ‖xn − xn+1‖ → 0, we deduce that ‖xn − tn‖ → 0.

Next, let x∗ ∈ E(f )∩Fix(S). Then, using Proposition 3.2, we can write, for every
n ∈ N, that

(1 − αn)(1 − 2λnc1)‖yn − xn‖2 ≤ [∥∥xn − x∗∥∥ + ∥∥tn − x∗∥∥]‖xn − tn‖,
(1 − αn)(1 − 2λnc2)‖zn − yn‖2 ≤ [∥∥xn − x∗∥∥ + ∥∥tn − x∗∥∥]‖xn − tn‖,

(1 − αn)(1 − βn)(βn − ξ)‖Szn − zn‖2 ≤ [∥∥xn − x∗∥∥ + ∥∥tn − x∗∥∥]‖xn − tn‖,
because ‖xn − x∗‖ − ‖tn − x∗‖ ≤ ‖xn − tn‖.

Since, for every n ∈ N,

1 − αn ≥ 1 − c > 0, 1 − 2λnc1 ≥ 1 − 2λmaxc1 > 0, ‖xn − tn‖ → 0,

1 − 2λnc2 ≥ 1 − 2λmaxc2 > 0, 1 − βn ≥ 1 − b > 0, βn − ξ ≥ d − ξ > 0,

and since the sequences {xn} and {tn} are bounded, it follows that

‖yn − xn‖ → 0, ‖zn − yn‖ → 0, ‖zn − xn‖ → 0, and ‖Szn − zn‖ → 0.

Step 2. x̄ ∈ E(f ).

Since xni
⇀ x̄ and ‖xn − yn‖ → 0, we have that yni

⇀ x̄. On the other hand, using
Proposition 3.1(i), we have, for every y ∈ C, and for every i ∈ N, that

〈xni
− yni

, y − yni
〉 ≤ λni

f (xni
, y) − λni

f (xni
, yni

). (7)
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Since ‖xni
− yni

‖ → 0 and y − yni
⇀ y − x̄ as i → ∞, and since, for every i ∈ N,

0 < λmin ≤ λni
≤ λmax, we obtain, after taking the limit in (7), that

f (x̄, y) ≥ 0 for every y ∈ C,

i.e., x̄ ∈ E(f ).

Step 3. x̄ ∈ Fix(S).

Since xni
⇀ x̄ and ‖xn − zn‖ → 0, we have that zni

⇀ x̄. On the other hand, we
know that ‖Szni

− zni
‖ → 0. Consequently, the mapping I − S being demiclosed at

zero, it follows immediately that Sx̄ − x̄ = 0, i.e., x̄ ∈ Fix(S). �

4 Extragradient Algorithms with Linesearches

The extragradient-type algorithm considered in the previous section has been proven
to be strongly convergent under the Lipschitz-type condition (A5). This condition de-
pends on two positive parameters c1 and c2 and, in some cases, they are unknown or
difficult to approximate. In this section, we modify the second step of the extragra-
dient iteration, i.e., the computation of zn, by including a linesearch and a projection
onto a hyperplane. Considering two different projections, we obtain two algorithms
(Algorithms 2 and 2a) whose strong convergence can be established without assum-
ing the Lipschitz-type condition (A5). However, in compensation, we have to slightly
reinforce assumption (A3). More precisely, in this section, we suppose that the func-
tion f satisfies conditions (A1), (A2), (A4), as well as the following condition:

(A3bis) f is jointly weakly continuous on the product � × � where � is an open
convex set containing C in the sense that if x, y ∈ � and {xn} and {yn}
are two sequences in � converging weakly to x and y, respectively, then
f (xn, yn) → f (x, y).

Furthermore, we also suppose that the mapping S satisfies condition (B1) and the
sequences of parameters {αn}, {βn}, and {λn} satisfy the conditions:

(Q)

{ {αn} ⊂ [0, c] for some c < 1, {βn} ⊂ [d, b] for some 0 ≤ ξ < d ≤ b < 1,

{λn} ⊂ [λ,1] for some 0 < λ ≤ 1.

Under these assumptions, we will obtain an algorithm strongly converging to
a point x∗ ∈ E(f ) ∩ Fix(S) under the same assumptions as the ones used by the
proximal-type methods [20–25]. However, our subproblems, being strongly convex
minimization problems, seem easier to solve than the proximal subproblem (1).

Our first extragradient-type algorithm with a linesearch can be expressed as fol-
lows.

Algorithm 2

Step 0. Choose α ∈]0,2[, γ ∈]0,1[ and the sequences

{αn} ⊂ [0,1[, {βn} ⊂ ]0,1[ and {λn} ⊂ ]0,1].
Step 1. Let x0 ∈ C. Set n = 0.
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Step 2. Solve the strongly convex program miny∈C{λnf (xn, y) + 1
2‖y − xn‖2} to

obtain the unique optimal solution yn.
Step 3. If yn = xn, then set zn = xn. Otherwise

Step 3.1. Find m the smallest nonnegative integer such that
{

f (zn,m, xn) − f (zn,m, yn) ≥ α
2λn

‖xn − yn‖2 where

zn,m = (1 − γ m)xn + γ myn.

Step 3.2. Set ρn = γ m, zn = zn,m, and go to Step 4.

Step 4. Select gn ∈ ∂2f (zn, xn) and compute wn = PC(xn − σngn) where σn =
f (zn,xn)

‖gn‖2 if yn �= xn and σn = 0 otherwise.

Step 5. Compute tn = αnxn + (1 − αn)[βnwn + (1 − βn)Swn].
If yn = xn and tn = xn, then STOP: xn ∈ E(f ) ∩ Fix(S).
Otherwise, go to Step 6.

Step 6. Compute xn+1 = PCn∩Dnx0, where

Cn = {
z ∈ C : ‖tn − z‖ ≤ ‖xn − z‖} and

Dn = {
z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0

}
.

Step 7. Set n := n + 1, and go to Step 2.

First we prove that the linesearch is well defined and that the steplength σn is
positive when yn �= xn (see Steps 3–4 of Algorithm 2).

Proposition 4.1 Suppose that yn �= xn for some n ∈ N. Then

(i) The linesearch corresponding to xn and yn (Step 3.1) is well defined.
(ii) f (zn, xn) > 0.

(iii) 0 �∈ ∂2f (zn, xn).

Proof We only prove the first statement. The proof of the other ones can be found
in [34, Lemma 4.5]. Let n ∈ N and suppose, to get a contradiction that the following
inequality hold for every integer m ≥ 0

f (zn,m, xn) − f (zn,m, yn) <
α

2λn

‖xn − yn‖2, (8)

where zn,m = (1 − γ m)xn + γ myn and γ ∈]0,1[. Then {zn,m}m converges strongly
to xn as m → ∞, and thus also weakly. Since f (·, x) is weakly continuous on an
open set � ⊃ C for every x ∈ �, it follows that f (zn,m, xn) → f (xn, xn) = 0, and
that f (zn,m, yn) → f (xn, yn). So, taking the limit on m in (8), yields

−f (xn, yn) ≤ α

2λn

‖yn − xn‖2. (9)

Now, from Proposition 3.1(i) with y = xn, we can write that

‖yn − xn‖2 ≤ −λnf (xn, yn).
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Combining this inequality with (9), we obtain that (1 − α
2 )‖yn − xn‖2 ≤ 0. Since

α ∈]0,2[, we deduce that yn = xn, which gives rise to a contradiction, because we
have supposed that yn �= xn. Consequently, the linesearch is well defined. �

In the next proposition, we justify the stopping criterion.

Proposition 4.2 If yn = xn, then xn ∈ E(f ). If yn = xn and tn = xn, then wn = xn

and xn ∈ E(f ) ∩ Fix(S).

Proof When yn = xn, it follows from Proposition 3.1(i), that

0 ≤ λnf (xn, y) − λnf (xn, xn) = λnf (xn, y)

holds for every y ∈ C. This means that xn ∈ E(f ).
On the other hand, when yn = xn and tn = xn, we have that wn = xn, because

σn = 0 and xn ∈ C. Hence,

xn = αnxn + (1 − αn)
[
βnxn + (1 − βn)Sxn

]
.

Since, by assumption, 1 − αn > 0 and 1 − βn > 0, it follows that Sxn = xn, i.e.,
xn ∈ Fix(S). �

The next proposition will be used in the proof of the convergence theorem. It is an
infinite-dimensional version of Theorem 24.5 in [35].

Proposition 4.3 Let f : � × � → R be a function satisfying conditions (A3bis)
and (A4). Let x̄, z̄ ∈ � and {xn} and {zn} be two sequences in � converging weakly
to x̄, z̄, respectively. Then, for any ε > 0, there exist η > 0 and nε ∈ N such that

∂2f (zn, xn) ⊂ ∂2f (z̄, x̄) + ε

η
B,

for every n ≥ nε , where B denotes the closed unit ball in H .

Proof For every n ∈ N, consider the convex functions hn := f (zn, ·) and h := f (z̄, ·).
Let also d ∈ H and μ > h′(x̄;d). Then, by definition of the directional derivative,
there exists λ > 0 such that

h(x̄ + λd) − h(x̄)

λ
< μ.

Since f is jointly weakly continuous on � × � and since xn + λd ⇀ x̄ + λd and
xn ⇀ x̄, we obtain that hn(xn + λd) → h(x̄ + λd) and hn(xn) → h(x̄). Hence, for n

sufficiently large, we have

hn(xn + λd) − hn(xn)

λ
< μ. (10)

Since h′
n(xn;d) ≤ hn(xn+λd)−hn(xn)

λ
, and as (10) is true for any μ > h′(x̄;d), it follows

that

lim sup
n→∞

h′
n(xn;d) ≤ h′(x̄;d) ∀d ∈ H.
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Then, from Corollary 2.1, for every ε > 0, there exists n0 ∈ N such that

h′
n(xn;d) ≤ h′(x̄;d) + ε ∀n ≥ n0, ∀d ∈ ηB.

By positive homogeneity, we have

h′
n(xn;d) ≤ h′(x̄;d) + ε

η
‖d‖ ∀n ≥ n0, ∀d ∈ H.

Since the directional derivative is the support function of the subdifferential, we easily
deduce that

∂hn(xn) ⊂ ∂h(x̄) + ε

η
B.

However, this means that

∂2f (zn, xn) ⊂ ∂2f (z̄, x̄) + ε

η
B. �

The next proposition will play the same role as Propositions 3.1 and 3.2, but for
Algorithm 2.

Proposition 4.4 For every x∗ ∈ E(f ) ∩ Fix(S) and all n ∈ N, one has

(i) ‖wn − x∗‖2 ≤ ‖xn − x∗‖2 − σ 2
n‖gn‖2,

(ii) ‖tn − x∗‖2 ≤ ‖xn − x∗‖2 − (1 − αn)σ
2
n‖gn‖2 − (1 − αn)(1 − βn)(βn − ξ) ×

‖Swn − wn‖2.

Proof (i) Using the definition of wn, and the nonexpansiveness of the projection, we
obtain

∥∥wn − x∗∥∥2 ≤ ∥∥xn − σngn − x∗∥∥2

= ∥∥xn − x∗∥∥2 − 2σn

〈
gn, xn − x∗〉 + σ 2

n‖gn‖2. (11)

On the other hand, using successively the definition of the subgradient gn, the pseu-
domonotonicity of f on C, and the definition of σn, we can write that

〈
gn, xn − x∗〉 ≥ f (zn, xn) − f

(
zn, x

∗) ≥ f (zn, xn) = σn‖gn‖2. (12)

Let us point out that this property also holds when yn = xn because, in that case,
zn = xn and σn = 0. Combining (11) and (12), we easily deduce (i).

(ii) Let x∗ ∈ E(f ) ∩ Fix(S). Then the inequality (3) can be easily obtained with
wn instead of zn:

∥∥tn − x∗∥∥2 ≤ αn

∥∥xn − x∗∥∥2 + (1 − αn)
∥∥wn − x∗∥∥2

− (1 − αn)(1 − βn)(βn − ξ)‖Swn − wn‖2.

Combining this inequality and (i), we directly obtain (ii). �

Now we suppose that the STOP, in Step 5, never occurs in Algorithm 2, and we
prove the strong convergence of the infinite sequence {xn} generated by this algo-
rithm, to the projection of x0 onto E(f ) ∩ Fix(S).
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Theorem 4.1 Let C be a nonempty, closed, and convex subset of H . Let f be a
function from � × � into R satisfying conditions (A1), (A2), (A3bis), (A4), and
let S be a mapping from C to C satisfying condition (B1), and such that E(f ) ∩
Fix(S) �= ∅. Let α ∈]0,2[, γ ∈]0,1[, and suppose that the sequences {αn}, {βn}, and
{λn} satisfy the conditions (Q). Then the sequence {xn} generated by Algorithm 2
converges strongly to the projection of x0 onto E(f ) ∩ Fix(S).

Proof Let {xn} be the infinite sequence generated by Algorithm 2. Since we use
the hybrid projection method, it follows from our discussion in Sect. 3 that the
sequence {xn} generated by Algorithm 2 satisfies the inequalities (4), and thus is
bounded. Consequently, from Proposition 3.3, the strong convergence of the se-
quence {xn} to the projection of x0 onto E(f ) ∩ Fix(S) holds provided that every
weak limit point of {xn} is an element of E(f ) ∩ Fix(S). So, let x̄ be a weak limit
point of {xn}, and suppose that xni

⇀ x̄. Since C is closed and convex, it is also
weakly closed, and thus x̄ ∈ C. The proof of x̄ ∈ E(f ) ∩ Fix(S) is done in several
steps.

Step 1. ‖xn+1 − xn‖ → 0, ‖xn − tn‖ → 0, σn‖gn‖ → 0, ‖Swn − wn‖ → 0.

The proof of the first two limits is the same as the proof of the first step of Theo-
rem 3.1. On the other hand, let x∗ ∈ E(f ) ∩ Fix(S). Then, from Proposition 4.4(ii),
it follows that the next two inequalities

(1 − αn)σ
2
n‖gn‖2 ≤ ‖xn − tn‖

[∥∥xn − x∗∥∥ + ∥
∥tn − x∗∥∥]

,

(1 − αn)(1 − βn)(βn − ξ)‖Swn − wn‖2 ≤ ‖xn − tn‖
[∥∥xn − x∗∥∥ + ∥∥tn − x∗∥∥]

,

hold for every n∈ N. Since 1−αn ≥ 1−c > 0, 1−βn ≥ 1−b > 0, βn − ξ ≥ d − ξ > 0,
for every n ∈ N, since ‖xn − tn‖ → 0, and since the sequences {xn} and {tn} are
bounded, we easily deduce from the first inequality that σn‖gn‖ → 0, and from the
second inequality that ‖Swn − wn‖ → 0.

Step 2. The sequences {yni
}, {znj

}, and {gni
} are bounded. Furthermore, the sequence

{f (zni
, xni

)} converges to zero as i → ∞.

In order to show that the sequence {yni
} is bounded, it suffices to prove that there ex-

ists M > 0 such that ‖xni
− yni

‖ ≤ M for i large enough. Without loss of generality,
we can suppose that xni

�= yni
for all i, and we set

Ai(y) = λni
f (xni

, y) + 1

2
‖y − xni

‖2,

for every y ∈ C. Since f (xni
, ·) is convex, it is easy to see that Ai(y) is a strongly

convex function on C with modulus ν = 1. So, for all y1, y2 ∈ C, s(y1) ∈ ∂Ai(y1)

and s(y2) ∈ ∂Ai(y2), we have the inequality
〈
s(y1) − s(y2), y1 − y2

〉 ≥ ‖y1 − y2‖2.

Taking y1 = xni
and y2 = yni

and noting that 0 ∈ ∂Ai(yni
) + NC(yni

) by definition
of yni

, we obtain that there exists s(yni
) ∈ ∂Ai(yni

) such that −s(yni
) ∈ NC(yni

),
i.e.,

〈−s(yni
), y − yni

〉 ≤ 0 for every y ∈ C. (13)
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So, for every s(xni
) ∈ ∂Ai(xni

), we have
〈
s(xni

), xni
− yni

〉 ≥ 〈
s(yni

), xni
− yni

〉 + ‖xni
− yni

‖2

≥ ‖xni
− yni

‖2,

where we have used (13) with y = xni
. Consequently, we obtain that

‖xni
− yni

‖ ≤ ∥∥s(xni
)
∥∥ for every s(xni

) ∈ ∂Ai(xni
). (14)

On the other hand, since xni
⇀ x̄, it follows from Proposition 4.3, that for any ε > 0,

there exist η > 0 and i0 ∈ N such that

∂2f (xni
, xni

) ⊂ ∂2f (x̄, x̄) + ε

η
B (15)

holds for all i ≥ i0, where B denotes the closed unit ball of H .
Since s(xni

) ∈ ∂Ai(xni
) = λni

∂2f (xni
, xni

) for all i, and the set ∂2f (x̄, x̄) is
bounded, and as 0 < λ ≤ λni

≤ 1 for all i, the inclusion (15) implies that the right-
hand side of (14) be bounded. So, there exists M > 0 such that ‖xni

− yni
‖ ≤ M for

all i ≥ i0, and the sequence {yni
} is bounded.

The sequence {zni
}, being a convex combination of the sequences {xni

} and {yni
},

is also bounded, and there exists a subsequence of {zni
}, again denoted {zni

}, that
converges weakly to z̄ ∈ C. Then it follows from Proposition 4.3, that for any ε > 0,
there exists η > 0 and i0 such that

∂2f (zni
, xni

) ⊂ ∂2f (z̄, x̄) + ε

η
B

holds for all i ≥ i0. Since gni
∈ ∂2f (zni

, xni
) for all i, and as B and ∂2f (z̄, x̄)) are

bounded, we deduce that {gni
} is bounded. Then,

f (zni
, xni

) = σni
‖gni

‖‖gni
‖ → 0.

Indeed, the previous equality comes from the definition of σni
when yni

�= xni
, from

σni
= 0 and f (zni

, xni
) = 0 (because zni

= xni
) when yni

= xni
. Finally, the conver-

gence to zero follows directly from the boundedness of {gni
} and from σni

‖gni
‖ → 0

(see Step 1 of this proof).

Step 3. ‖xni
− yni

‖ → 0, and x̄ belongs to E(f ).

If yni
= xni

for an infinite number of indices ni , then it follows from Proposi-
tion 3.1(i) that, for every i ∈ N,

0 ≤ λni
f (xni

, y) ∀y ∈ C. (16)

Since λni
∈ [λ,1] with λ > 0 and since f (·, y) is weakly continuous on the open set

� ⊃ C, we obtain, after taking the limit in (16) as i → ∞, that 0 ≤ f (x̄, y) for every
y ∈ C, i.e., x̄ ∈ E(f ).

Now, we suppose that yni
�= xni

for i large enough, and let i be such an index. The
function f (zni

, ·) being convex, we can write

ρni
f (zni

, yni
) + (1 − ρni

)f (zni
, xni

)

≥ f
(
zni

, ρni
yni

+ (1 − ρni
)xni

) = f (zni
, zni

) = 0.
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Hence, ρni
[f (zni

, xni
) − f (zni

, yni
)] ≤ f (zni

, xni
). Now, by definition of the line-

search, we have
α

2λni

‖yni
− xni

‖2 ≤ f (zni
, xni

) − f (zni
, yni

).

Multiplying both sides of the previous inequality by ρni
, we obtain

ρni
α

2λni

‖yni
− xni

‖2 ≤ ρni

[
f (zni

, xni
) − f (zni

, yni
)
]

≤ f (zni
, xni

) → 0. (17)

Since 0 < λ ≤ λni
≤ 1 for every i, it follows from (17) that

‖xni
− yni

‖ → 0 and yni
⇀ x̄. (18)

Indeed, in the case where lim supρni
> 0, there exist ρ̄ > 0 and a subsequence of

{ρni
}, denoted again by {ρni

}, such that ρni
→ ρ̄. Then, by (17), ‖xni

− yni
‖ → 0 as

i → ∞. In the case where ρni
→ 0, let {mi} be the sequence of the smallest positive

integers such that, for every i,

f (zni
, xni

) − f (zni
, yni

) ≥ α

2λni

‖xni
− yni

‖2,

where zni
= (1 − γ mi )xni

+ γ mi yni
. Since ρni

= γ mi → 0, it follows that mi > 1 for
i sufficiently large, and consequently that

f (z̄ni
, xni

) − f (z̄ni
, yni

) <
α

2λni

‖xni
− yni

‖2, (19)

where z̄ni
= (1 − γ mi−1)xni

+ γ mi−1yni
. On the other hand, using Proposition 4.4(i)

with n = ni and y = xni
, we can write

‖xni
− yni

‖2 ≤ −λni
f (xni

, yni
). (20)

Combining (19) with (20), we obtain

f (z̄ni
, xni

) − f (z̄ni
, yni

) < −α

2
f (xni

, yni
). (21)

Taking the limit in (21) as i → ∞, using the weak continuity of f , and recalling that
xni

⇀ x̄, yni
⇀ ȳ, and γ mi → 0, we have that z̄ni

⇀ x̄ and

−f (x̄, ȳ) ≤ −α

2
f (x̄, ȳ),

i.e., f (x̄, ȳ) ≥ 0, because α ∈]0,2[. Then, taking the limit in (20) as i → ∞, we have
that ‖xni

− yni
‖ → 0, and thus, since xni

⇀ x̄, that yni
⇀ x̄. Since λni

∈ [λ,1] with
λ > 0, we obtain, after taking the limit on i in Proposition 3.1(i) with n = ni , that
0 ≤ f (x̄, y) for every y ∈ C, i.e., x̄ ∈ E(f ).

Step 4. x̄ belongs to Fix(S).

Since ‖wn − xn‖ ≤ ‖xn − σngn − xn‖ = σn‖gn‖ → 0, we have immediately that
‖wn − xn‖ → 0, and thus that wni

⇀ x̄. Then the operator I −S being demiclosed at
zero, and ‖Swni

− wni
‖ → 0, we can conclude that Sx̄ − x̄ = 0, i.e., x̄ ∈ Fix(S). �
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In Algorithm 2, two projections are needed to get wn. First, xn is projected onto
the half-space

Hn = {
x ∈ H : 〈gn, xn − x〉 ≥ f (zn, xn)

}

to get xn − σngn, and after that, this point is projected onto C to get wn. In the next
algorithm, denoted Algorithm 2a, only one projection of xn is performed onto the in-
tersection C ∩Hn to get wn. In other words, Algorithm 2a is the same as Algorithm 2,
except that step 4 is replaced by

Step 4a. Select gn ∈ ∂2f (zn, xn) and compute wn =PC∩Hn(xn), where Hn ={x ∈H :
〈gn, xn − x〉 ≥ f (zn, xn)}.

In order to prove the strong convergence of the sequence {xn} generated by Algo-
rithm 2a, it is interesting to rewrite Step 4a under an equivalent form. It is the aim of
the next proposition.

Proposition 4.5 Let wn = PC∩Hn(xn). Then wn = PC∩Hn(un) where un = PHn(xn).

Proof First observe that when yn = xn, we have that zn = xn and xn ∈ Hn. Conse-
quently, in that case, un = xn and wn = PC∩Hn(un). Next, we consider the case when
yn �= xn for every n. Taking any y ∈ C ∩ Hn, we have to prove that ‖wn − un‖ ≤
‖y − un‖. Since f (x, .) is convex, we have

tnf (zn, yn) + (1 − tn)f (zn, xn) ≥ f (zn, zn) = 0,

where 0 < tn < 1. Using the linesearch, we deduce from the previous inequality that

f (zn, xn) ≥ tn
[
f (zn, xn) − f (zn, yn)

] ≥ tnα

2λn

‖yn − xn‖2 > 0.

But this implies that xn /∈ Hn. Hence, there exists μ ∈ [0,1[ such that

x̃ ≡ μxn + (1 − μ)y ∈ C ∩ bd(Hn),

where bd(Hn) = {x ∈ H : 〈gn, xn − x〉 = f (xn, zn)}. Using the definition of un, we
obtain that 〈x̃ − un, xn − un〉 ≤ 0. Consequently, we can write successively

‖y − un‖2 ≥ (1 − μ)2‖y − un‖2 = ∥∥x̃ − μxn − (1 − μ)un

∥∥2

= ∥∥x̃ − un − μ(xn − un)
∥∥2

= ‖x̃ − un‖2 + μ2‖xn − un‖2 − 2μ〈x̃ − un, xn − un〉
≥ ‖x̃ − un‖2 + μ2‖xn − un‖2

≥ ‖x̃ − un‖2. (22)

Furthermore, since xn �∈ Hn, we have that un = Pbd(Hn)(xn) and wn = PC∩bd(Hn)(xn).
Then, using successively the Pythagoras theorem, the definitions of wn and un, we
obtain
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‖x̃ − un‖2 = ‖x̃ − xn‖2 − ‖un − xn‖2

≥ ‖wn − xn‖2 − ‖un − xn‖2

≥ ‖wn − un‖2. (23)

From (22) and (23), we obtain that ‖y − un‖2 ≥ ‖wn − un‖2 for every y ∈ C ∩ Hn,
i.e., wn = PC∩Hn(un). �

Thanks to this proposition, the only difference between the two algorithms is in the
computation of wn. For Algorithm 2, we have wn = PC(un), while for Algorithm 2a,
we have wn = PC∩Hn(un). Since E(f ) ∩ Fix(S) ⊂ C ∩ Hn ⊂ C (see the proof of
Theorem 4.2), we have that the point wn, computed in Algorithm 2a, is closer to the
solution set than the point wn computed in Algorithm 2.

Theorem 4.2 Let C be a nonempty, closed and convex subset of H . Let f be a
function from �×� into R satisfying conditions (A1), (A2), (A3bis), (A4), and S be
a mapping from C to C satisfying condition (B1), and such that E(f ) ∩ Fix(S) �= ∅.
Let α ∈]0,2[, γ ∈]0,1[, and suppose that the sequences {αn}, {βn}, and {λn} satisfy
the conditions (Q): Then the sequence {xn} generated by Algorithm 2a converges
strongly to the projection of x0 onto E(f ) ∩ Fix(S).

Proof Let x∗ ∈ Fix(S) ∩ E(f ). First, we observe that x∗ and zn belong to C ∩ Hn,
for every integer n ≥ 1. Indeed, by definition of gn, we have

f (zn, y) ≥ f (zn, xn) + 〈gn, y − xn〉 ∀y ∈ C.

Taking y = x∗, and remembering that f (zn, x
∗) ≤ 0, we deduce that 〈gn, xn − x∗〉 ≥

f (zn, xn), i.e., x∗ ∈ Hn. Similarly, taking y = zn, and remembering that f (zn, zn)= 0,
we obtain that 〈gn, xn − zn〉 ≥ f (zn, xn), i.e., zn ∈ Hn.

The rest of the proof of this theorem is similar to the proof of Theorem 4.1, except
the first part of step 4, namely, the proof of wni

⇀ x̄. In that purpose, let xni
⇀ x̄.

Since zni
∈ C ∩ Hni

, wni
= PC∩Hni

(uni
), and uni

= PHni
(xni

), we have

‖wni
− zni

‖ ≤ ‖uni
− zni

‖ ≤ ‖xni
− zni

‖.
Hence, ‖wni

− zni
‖ → 0 because ‖xni

− zni
‖ = γni

‖xni
− yni

‖ → 0 (see Step 3 of
the proof of Theorem 4.1). Consequently, it follows from xni

⇀ x̄ that zni
⇀ x̄, and

thus that wni
⇀ x̄. �

5 The Particular Case of Variational Inequalities

In this section, we consider the particular Ky Fan inequality corresponding to the
function f defined, for every x, y ∈ C, by

f (x, y) = 〈
F(x), y − x

〉
, with F : C → H.

Doing so, we obtain the classical variational inequality: Find x∗ ∈ C such that
〈
F

(
x∗), y − x∗〉 ≥ 0 for every y ∈ C.



624 J Optim Theory Appl (2012) 155:605–627

The set of solutions of this problem is denoted by VI(F ). In that particular situation,
the solution yn of the minimization problem

min
y∈C

{
λnf (xn, y) + 1

2
‖y − xn‖2

}

can be expressed as yn = PC(xn − λnF (xn)). Furthermore, the Armijo condition

f (zn, xn) − f (zn, yn) ≥ α

2λn

‖xn − yn‖2

gives rise to the inequality
〈
F(zn), xn − yn

〉 ≥ α

2λn

‖xn − yn‖2.

Then it is easy to see that Algorithm 2 can be rewritten as follows.

Algorithm 2-VI

Step 0. Choose α ∈]0,2[, γ ∈]0,1[ and the sequences

{αn} ⊂ [0,1[, {βn} ⊂ ]0,1[ and {λn} ⊂ ]0,1].
Step 1. Let x0 ∈ C. Set n = 0.
Step 2. Compute yn = PC(xn − λnF (xn)).
Step 3. If yn = xn, then set zn = xn. Otherwise

Step 3.1. Find m the smallest nonnegative integer such that
{ 〈F(zn,m), xn − yn〉 ≥ α

2λn
‖xn − yn‖2 where

zn,m = (1 − γ m)xn + γ myn.

Step 3.2. Set ρn = γ m, zn = zn,m, and go to Step 4.

Step 4. Compute wn = PC(xn − σnF (zn)) where σn = 〈F(zn),xn−zn〉
‖F(zn)‖2 if yn �= xn, and

σn = 0 otherwise.
Step 5. Compute tn = αnxn + (1 − αn)[βnwn + (1 − βn)Swn].

If yn = xn and tn = xn, then STOP: xn ∈ VI(F ) ∩ Fix(S).
Otherwise, go to Step 6.

Step 6. Compute xn+1 = PCn∩Dnx0, where

Cn = {
z ∈ C : ‖tn − z‖ ≤ ‖xn − z‖} and

Dn = {
z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0

}
.

Step 7. Set n := n + 1, and go to step 2.

In order to apply Theorem 4.1 to the variational inequality, let us observe that, in
this particular case, conditions (A1) and (A4) are always satisfied, and that condition
(A2) becomes: F is pseudomonotone on C, i.e.,

〈
F(x), y − x

〉 ≥ 0 ⇒ 〈
F(y), x − y

〉 ≤ 0 for every x, y ∈ C.

Furthermore, if F : � → H is such that, for any sequence {xn} ⊂ �,

xn ⇀ x ⇒ F(xn) → F(x), (24)

then the corresponding function f is weakly continuous on � × �.
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Taking account of these properties, Theorem 4.1 can be rewritten as the following.

Theorem 5.1 Let C be a nonempty, closed, and convex subset of H . Let F : � → H

be a mapping, pseudomonotone on C, and satisfying (24). Let S be a mapping from
C to C satisfying conditions (B1), and such that VI(F ) ∩ Fix(S) �= ∅. Let α ∈]0,2[,
γ ∈]0,1[, and suppose that the sequences {αn}, {βn}, and {λn} satisfy the condi-
tions (Q). Then the sequence {xn} generated by Algorithm 2-VI converges strongly to
the projection of x0 onto VI(F ) ∩ Fix(S).

Finally, to obtain the algorithm and the convergence theorem corresponding to
Algorithm 2a, but for the variational inequality, it suffices to replace in step 4 the
calculation of wn by wn = PC∩Hn(xn) where

Hn = {
x ∈ H : 〈F(zn), zn − x

〉 ≥ 0
}
.

6 Conclusion

Two new iterative methods have been introduced for finding a common element of the
set of points satisfying a Ky Fan inequality and the set of fixed points of a contraction
mapping in a Hilbert space. The basic iteration used in this paper is the extragradient
iteration with or without the inclusion of a linesearch procedure. The strong conver-
gence of the iterates has been obtained thanks to a hybrid projection method. Another
approach, known as the viscosity method, has been studied in the literature to obtain
strong convergence theorems. This approach could be an interesting variant to the
method developed in this paper. This will be the subject of a forthcoming research
paper.
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